
Charon Documentation

version 2025.1.3

Denis Zykov

March 27, 2025





Contents
Overview 1

Why Choose Charon? 1

Is It Free? 1

What is Charon 1

Further reading 1

Unreal Engine Plugin Overview 1

Key Features 1

Getting Started 2

Prerequisites 2

Installation from Marketplace 3

Building from Source Code 3

Core Concepts 3

Data-Driven Design Principles 3

Understanding the Plugin’s Architecture 3

Working with the Plugin 4

Creating Game Data 4

Editing Game Data 4

Refencing Game Data in Blueprints 4

Advanced Features 5

Localization and Multi-Language Support 5

Referencing Unreal Engine Assets 5

Feedback 5

See also 5

How to Create Game Data File 6

Step By Step 6

Throubleshooting 6

See also 7

Unity Plugin Overview 7

Key Features 7

Getting Started 8

Prerequisites 8

Installation from OpenUPM (recommended) 8

Installation from Unity Asset Store 8

Installation from GitHub 8

Core Concepts 9

Data-Driven Design Principles 9

Understanding the Plugin’s Architecture 9

Working with the Plugin 9

Creating Game Data 9

Editing Game Data 10

Advanced Features 10

Localization and Multi-Language Support 10

Referencing Game Data in Scenes 10

Work & Build Automation 10



Feedback 11

See also 11

CharonCli Overview 11

Game Data Management 11

Import and Export 11

Localization (I18N) 11

Patching and Backup 11

Validation and Code Generation 12

Tool Utilities 12

See also 12

Migration from Legacy Version (Before 2025.1.*) 12

Automated Migration 12

Manual Migration 13

See also 13

Migrating to Web Application 13

Migration with Connection 13

See also 14

Standalone Application Overview 14

Prerequisites 14

Installation and Updates 14

Creating and Editing Game Data 15

See also 16

Web Application Overview 16

Starting with a new Project 16

See also 17

CLI Access to charon.live 17

Step By Step 17

See also 17

Migrating to Web Application 17

Backup Data Step by Step 18

Restoring Backup in the Web Application 18

See also 18

Roles and Permissions 18

See also 19

REST API 19

Testing REST API 19

Working with REST API 19

Authentication 19

DataSource 22

DataSourceCapabilities 32

UserPresence 32

Processes 33

Formulas 34

AiCompletion 35

MachineTranslation 36

Preferences 37



User 41

Workspace 46

WorkspaceQuota 48

Project 48

Membership 52

Billing 53

Search 55

ResourceStorage 55

Context 56

Notifications 57

Troubleshooting 57

Basic Navigation and User Interface Overview 57

Dashboard 57

Document Collection 57

Document Form 58

See also 58

Creating Document Type (Schema) 58

Schema 58

Benefits of Structured Data 58

Data Organization 58

Data Validation 58

Data Consistency 58

Data Interoperability 59

Analyzing Game Requirements 59

Identifying Schemas and Relationships 59

Defining Schemas and Properties 59

All Data Types 60

Date 60

Example 60

Document 60

Example 60

Document Collection 61

Example 61

Formula 61

Example 62

Integer 62

Example 62

Localized Text 62

Example 62

Logical 63

Example 63

Multi-Pick List 63

Example 63

Number 63

Example 64

Pick List 64



Example 64

Reference 64

Example 64

Reference Collection 65

Example 65

Text 65

Example 65

Time 65

Example 66

Table with example 66

See also 66

Filling Documents 67

Importing JSON files 67

Exporting to Spreadsheet and Importing Back 67

Adding New Document 67

See also 67

Generating Source Code 67

Using Project’s Dashboard UI 68

Using Command-Line Interface (CLI) 68

Example 68

See also 68

Implementing Inheritance 69

1. Composition 70

2. Merging 70

3. Aggregation 71

Conclusion 71

See also 71

Publishing Game Data 72

Using Project’s Dashboard UI 72

Using Command-Line Interface (CLI) 72

Example 72

See also 72

Working with Source Code (C# 4.0) 72

Loading Game Data 73

Accessing Documents 73

Formulas 73

Generated Code Extensions 73

See also 74

Working with Source Code (C# 7.3) 74

Loading Game Data 74

Accessing Documents 74

Formulas 74

Generated Code Extensions 74

See also 75

Working with Source Code (Haxe) 75

Loading Game Data 75



Accessing Documents 75

Formulas 75

See also 75

Working with Source Code (Type Script) 76

Loading Game Data 76

Accessing Documents 76

Formulas 76

See also 77

Working with Source Code (UE C++) 77

Loading Game Data 77

Accessing Documents 77

Formulas 78

See also 78

Command Line Interface (CLI) 78

Installation 78

Option 1: dotnet tool (recommended) 78

Option 2: Bootstrap scripts 78

Command Syntax 79

Absolute and relative paths 79

Getting Help Text 79

Apply Patch 80

Command 80

Parameters 80

Create Backup 81

Command 81

Parameters 81

Output 82

Create Document 82

Command 82

Parameters 83

Input Data Schema 84

Output 85

Create Patch 85

Command 85

Parameters 85

Delete Document 86

Command 87

Parameters 87

Output 88

Export Data 88

Command 89

Parameters 89

Output 92

Modifying Exported Data with yq 92

Find Document 93

Command 93



Parameters 93

Output 94

Add Translation Languages 94

Command 95

Parameters 95

Export Translated Data 95

Command 95

Parameters 95

Output 97

Importing Translated Data 97

Command 98

Parameters 98

List Translation Languages 100

Command 101

Parameters 101

Import Data 102

Command 102

Parameters 102

Input Data Structure 105

List Documents 106

Command 106

Parameters 106

Output 109

Restore from Backup 109

Command 109

Parameters 109

Update Document 110

Command 110

Parameters 111

Input Data Schema 113

Output 113

Validate Game Data 113

Command 114

Parameters 114

Output Data Schema 115

Generate C# Source Code 117

Command 117

Parameters 117

Generate Haxe Source Code 119

Command 120

Parameters 120

Export Code Generation Templates 122

Command 122

Parameters 122

Generate Text from Templates (Obsolete) 122

Generate TypeScript Source Code 122



Command 123

Parameters 123

Generate Unreal Engine C++ Source Code 125

Command 125

Parameters 125

Initialize Game Data 127

Command 128

Parameters 128

URL input/output parameters 128

Supported URL Schemes 128

Authentication 128

Examples 129

Start in Standalone Mode 129

Command 129

Parameters 129

Universal parameters 130

Environment variables 130

Get Charon Version 130

Command 130

Parameters 130

Game Data Structure 131

Game Data 131

Project Settings 132

Schema 132

Schema Property 133

Internationalization (i18n) 134

Translation flow via UI 134

Translation flow via CLI 135

Exporting to XLSX spreadsheet 135

Importing from XLSX spreadsheet 135

Exporting to XLIFF 135

Importing from XLIFF 135

Other formats 135

Working with Logs 135

Logging Levels 136

Resetting UI Preferences 136

Frequently Asked Questions (FAQ) 136

Glossary 136

HTTP Routing Table 139





Overview
Charon is a powerful data-driven game development tool designed to streamline the creation and management of
static game data within your game. It allows both developers and game designers to efficiently model and edit game
entities such as characters, items, missions, quests, and more, directly within the Unity/Unreal Engine/Browser
environment. Charon simplifies the process of data manipulation, offering a user-friendly interface and automatic
source code generation, which significantly reduces development time and minimizes manual coding errors. Charon
also offers support for working with text in multiple languages, with easy loading and unloading of translated text.

With Charon, game developers can focus on creating engaging gameplay experiences without worrying about the
technical details of managing game data. It is available in three deployment variants, including a standalone
application, web application, Unity plugin and Unreal Engine plugin.

TLDR Charon is an in-game database for your game, replacing spreadsheets or config files.

Why Choose Charon?
Charon replaces traditional spreadsheets or config files with an in-game database, offering a structured and efficient
way to manage game data. It allows developers to focus on creating engaging gameplay experiences without
worrying about the technical details of data management.

Is It Free?
The offline version, CLI and plugins are completely free and have no restrictions. They are distributed under a free
license and allow you to distribute tools along with the game for modding games.

The online version, which allows working in large teams on shared game data, requires a subscription.

What is Charon
It is a .NET 8 console application that can be used as a command-line tool for performing CRUD operations with your
game data, or as an HTTP Server to provide a UI for modeling and editing your game data. There are plugins for
Unity and Unreal Engine that provide a more integrated experience while using Charon. As with any modern .NET
application, it can be launched as is on Windows, macOS and Linux and via dotnet tool.

Further reading

Unreal Engine Plugin Overview
Charon is a versatile plugin tailored for Unreal Engine, designed to facilitate data-driven game design by allowing
both developers and game designers to efficiently manage static game data, like units, items, missions, quests, and
other. Unlike Unreal Engine’s DataTables, Charon elevates the experience by offering an integrated editing UI
directly within Unreal Engine, enabling the modeling of diverse data structures suited to any game genre. It provides
a user-friendly interface that requires no special skills for game designers, simplifying the process of data
manipulation. For programmers, Charon streamlines development workflows by generating code to load game data
seamlessly into the game.

Key Features

Overview

1



• Data Modeling: Define game entities like characters, items, missions, quests, and dialogs to meet the specific
needs of your game. Interconnect and fill these tables within one UI.

• Error Control: Implements validation checks to verify the accuracy of input data, reducing the likelihood of
errors that could impact gameplay or development.

• Code Generation: Automates the creation of boilerplate code needed to work with your game data,
significantly speeding up development time and reducing manual coding errors.

• Spreadsheet Export/Import: Offers seamless integration with spreadsheet software, enabling you to
effortlessly populate, edit, and manage your game data in a familiar environment.

• Localization Export/Import: Simplifies the process of preparing game data for translation, making it
straightforward to adapt your game for global audiences.

• Modding Support: Empowers your gaming community by providing them with the tools to create and share
mods, enhancing the longevity and depth of your game.

• Dynamic Load: Facilitates the dynamic loading of game data, enabling features like A/B testing or the ability to
push hot updates directly to your players.

Getting Started
To begin using this plugin, the initial step involves installing the plugin from the Unreal Engine Marketplace. Once
installed, you’ll need to enable the plugin for your project through the project settings. Following this, a rebuild of your
project’s C++ code is necessary. The final step in the setup process is the creation of your first game data file.

Prerequisites

The Unreal Engine plugin is written in C++ but relies on dotnet charon, a .NET Core application which runs on
.NET 8.

Windows

1. Download and install NET 8+.

2. Make sure you have write access to %APPDATA%/Charon.

MacOS

1. Download and install NET 8+.

2. Make sure you have write access to ~/Library/Application Support/Charon.

3. Make sure dotnet is available from $PATH.

Linux

1. Download and install NET 8+.

2. Make sure you have write access to ~/.config.

3. Make sure dotnet is available from $PATH.

Checking Available .NET Versions

Overview

2

https://www.unrealengine.com/marketplace/en-US/product/charon-game-data-editor
https://docs.unrealengine.com/5.2/en-US/working-with-plugins-in-unreal-engine/
https://dotnet.microsoft.com/en-us/download
https://dotnet.microsoft.com/en-us/download
https://dotnet.microsoft.com/en-us/download


# check for dotnet already installed
dotnet --list-sdks

Installation from Marketplace

1. Add to cart Charon plugin [Epic Launcher] / [Web] in the Unreal Engine Marketplace.

2. Follow the instruction on installing plugin into your project:

a. Click Install to Engine and select the engine version.

b. Open your project and go to Edit → Plugins… window.

c. Type Charon in the Search bar.

d. Check the checkbox near the plugin’s name to enable it.

3. Rebuild project C++ code.

Building from Source Code

1. Clone or download the plugin source code from the GitHub repository.

2. Create a <project-dir>/Plugins/Charon directory.

3. Copy the plugin files into this directory. Ensure Charon.uplugin is located at the path
<project-dir>/Plugins/Charon/Charon.uplugin after copying.

4. Remove the "EngineVersion" attribute if your engine doesn’t match the plugin’s engine version.

5. Rebuild the project’s C++ code.

6. Enable the plugin in Edit → Plugins… if needed.

Core Concepts

Data-Driven Design Principles

Data-driven design emphasizes the control of gameplay through data, rather than source code/blueprints, with game
mechanics and processes determined by structured data files. For instance, rather than embedding damage
calculations directly in the game’s source code, these are defined by data specifying weapon effects and the rules for
their application. Or for example, mission progression is not hardcoded; it’s outlined in editable text files, making
these aspects of game design highly flexible. This approach not only facilitates quick adjustments during
development but also simplifies adding modding support post-release.

• Data Driven Gameplay Elements (UE Documentation)

• Modify Everything! Data-Driven Dynamic Gameplay Effects on ‘For Honor’ (Video)

• Data-driven Design in Unreal (Article)

Understanding the Plugin’s Architecture

Plugin Assets

Working with data in this plugin is akin to how the built-in DataTable functions. There is a data source file, a module
containing the code required to load the data, and an asset that will be utilized in the game. Whenever you edit a
data source file, you need to re-import this data into the asset. Should the data structure in the source file change,
then the C++ code must be regenerated.

Overview

3

com.epicgames.launcher://ue/marketplace/product/b4231a79707e491ba96b9842d971e6f4
https://www.unrealengine.com/marketplace/en-US/product/charon-game-data-editor
https://docs.unrealengine.com/5.2/en-US/working-with-plugins-in-unreal-engine/
https://github.com/gamedevware/charon-unreal-engine/tree/main
https://docs.unrealengine.com/5.3/en-US/data-driven-gameplay-elements-in-unreal-engine/
https://www.gdcvault.com/play/1024050/Modify-Everything-Data-Driven-Dynamic
https://benui.ca/unreal/data-driven-design/


For scenarios requiring dynamic loading of game data, this can be accomplished through the TryLoad method on
the game data class, which accepts the source JSON file.

Plugin Modules

The Charon plugin is structured into two modules:

• CharonEditor module acts as an Unreal Engine Editor extension. Extension points for the module are
declared in the ICharonEditorModule class, and automation of game data processing is facilitated
through the FCharonCli class.

• Charon module, houses the core logic and shared code crucial for handling game data files.

Working with the Plugin

Creating Game Data

To create a new game data file within the Unreal Engine Editor, open the Content Drawer, right-click in the desired
folder, and select in the Create Advanced Assets section Miscellaneous → Game Data menu option. Name your
game data file and proceed according to the instructions in the dialog window that appears.

Detailed guide on how to create game data.

Editing Game Data

To edit a game data file in the Unreal Engine Editor, navigate to the Content Drawer, find the corresponding .uasset
file, and double-click it. This action opens a new window featuring a user interface for editing the game data.
Remember to reimport and, if necessary, regenerate the source code after completing your edits.

Refencing Game Data in Blueprints

Similar to the DataTable’s FDataTableRowHandle, the Charon plugin introduces a specific type for referencing
documents within Blueprints, named FGameDataDocumentReference. This type is housed within the Charon
module. Here is example of Game Data Document Reference used to resolve Hero document:

Overview

4



Advanced Features

Localization and Multi-Language Support

Charon facilitates multi-language text support through the Localizable Text data type. When creating a
Schema, properties can be defined with various data types, including Localizable Text. Initially, all localizable
text defaults to EN-us (US English). Additional languages can be added via Project Settings →
Internationalization → Translation Languages in the Charon UI.

Exporting/importing localizable data.

Referencing Unreal Engine Assets

By default, game data files and the Charon editor are unaware of the surrounding content/assets. To reference
assets such as sounds, textures, models, or animations. For example you can create a ‘UeSoundAsset’ schema with
three properties: Id (required), Path, and Name. Prepare a FJsonObject listing of your assets (see Unreal Engine
AssetRegistry module documentation) in following format:

{
    "UeSoundAsset": [{
            "Id": "_Content_Sounds_MySound",
            "Path": "/Content/Sounds/MySound",
            "Name": "MySound"
        }
        /* other assets */
    ],
    /* other document collections to import */
}

Then, import this list into your game data file using the FCharonCli::Import method with
EImportMode::Replace import mode. It’s crucial that the Id field of imported records remains stable and
unchanged across imports for the same assets.

To streamline the process of importing asset paths, consider leveraging the
ICharonEditorModule::OnGameDataPreSynchronization event. This allows for automatic execution of the
import routine each time the Import button is clicked in the UI.

After you’ve imported the asset list into the game data file, you can reference them from your documents by adding a
Document Reference property with Reference Type → UeSoundAsset to the schema.

Feedback

We welcome and encourage feedback, particularly bug reports and suggestions, to help improve our tool. If you have
any questions or would like to share your thoughts, please join our Discord community or reach out to us via email at
support@gamedevware.com.

See also

• Basic Navigation and User Interface Overview

Overview

5

https://discord.gg/2quB5vXryd
mailto:support@gamedevware.com


• Creating Document Type (Schema)

• Filling Documents

• Frequently Asked Questions (FAQ)

• Glossary

How to Create Game Data File
To create a new game data file within the Unreal Engine Editor, open the Content Drawer, right-click in the desired
folder, and select in the Create Advanced Assets section Miscellaneous → Game Data menu option. Name your
game data file and proceed according to the instructions in the dialog window that appears.

Step By Step

1. Open Content Drawer: Open the Content Drawer window in the Unreal Engine Editor.

2. Select Folder: Right-click in the desired folder where you want to create the game data file.

3. Create Game Data: Navigate to Create Advanced Assets → Miscellaneous → Game Data from the context
menu.

4. Name the File: In the Content Drawer window that appears, enter a name for your game data file.

5. Check for Errors: Ensure there are no error messages in the dialog window that opens, then press Next.

6. Wait for Module Generation: Allow time for the new module to be generated, watching the wizard in the dialog
proceed to the next step automatically.

7. Review Summary: Check the summary and verify there are no suspicious errors in the Output Log window.

8. Recompile C++ Code: Use your IDE of choice to recompile the C++ code. Restart Unreal Engine Editor if
needed.

9. Import Game Data: Reopen the Content Drawer window and click the Import button.

10
.

Select .gdjs File: Locate and select the .gdjs game data file you named in step 4, then click Ok.

11
.

Choose Game Data Class: Select the Game Data class, which should match the game data file name. If it’s
not listed, return to step 7.

12
.

Save .uasset File: Save the newly created .uasset file after completing the import process.

Throubleshooting

Game data creation or code generation/compilation may encounter issues under certain circumstances:

Insufficient File System Rights or File Creation Errors - Problem: Lack of sufficient rights to the OS file system,
or errors during file creation (e.g., file name too long, antivirus block). - Solution: Check the Output Log window for
errors or the most recent log file in <project-dir>\Intermediate\Charon\logs and attempt to resolve them.

Class Name Collision Within Project - Solution 1 (Game Data Class Name Collision): Delete the newly created
.gdjs game data file and the generated module. Then, start over with a new name and clean your .Target.cs files
from the generated module name. - Solution 2 (Schema Class Name Collision): Open the game data in another
editor (Online, Standalone), rename the schema, and try again.

No Game Data Class in Import Window - Problem: The generated game data module is not being compiled. -
Solution: Ensure it’s added to your <project-name>.Target.cs and <project-name>Editor.Target.cs
files as an extra module. If missing, include following expression in both target files:

ExtraModuleNames.Add("<module-name>");

Additionally, verify that your .uproject file includes the generated module definition. If it’s absent, add the following
module definition to the Modules list:

Overview

6



{
    "Name": "<module-name>",
    "Type": "Runtime",
    "LoadingPhase": "Default"
}

See also

• Basic Navigation and User Interface Overview

• Creating Document Type (Schema)

• Filling Documents

• Frequently Asked Questions (FAQ)

• Glossary

Unity Plugin Overview
Charon is a versatile plugin tailored for Unity, designed to facilitate data-driven game design by allowing both
developers and game designers to efficiently manage static game data, like units, items, missions, quests, and other.
Charon elevates the experience by offering an editing UI directly in your web browser, enabling the modeling of
diverse data structures suited to any game genre. It provides a user-friendly interface that requires no special skills
for game designers, simplifying the process of data manipulation. For programmers, Charon streamlines
development workflows by generating code to load game data seamlessly into the game.

Key Features

• Data Modeling: Define game entities like characters, items, missions, quests, and dialogs to meet the specific
needs of your game. Interconnect and fill these tables within one UI.

• Error Control: Implements validation checks to verify the accuracy of input data, reducing the likelihood of
errors that could impact gameplay or development.

• Code Generation: Automates the creation of boilerplate code needed to work with your game data,
significantly speeding up development time and reducing manual coding errors.

• Spreadsheet Export/Import: Offers seamless integration with spreadsheet software, enabling you to
effortlessly populate, edit, and manage your game data in a familiar environment.

• Localization Export/Import: Simplifies the process of preparing game data for translation, making it
straightforward to adapt your game for global audiences.

• Modding Support: Empowers your gaming community by providing them with the tools to create and share
mods, enhancing the longevity and depth of your game.

• Dynamic Load: Facilitates the dynamic loading of game data, enabling features like A/B testing or the ability to
push hot updates directly to your players.

Overview

7

https://assetstore.unity.com/packages/tools/visual-scripting/game-data-editor-charon-95117


Getting Started

Prerequisites

Unity plugin uses dotnet charon tool, which is a .NET Core application built for .NET 8.

Windows

1. Download and install NET 8+.

2. Make sure you have write access to %APPDATA%/Charon.

MacOS

1. Download and install NET 8+.

2. Make sure you have write access to ~/Library/Application Support/Charon.

3. Make sure dotnet is available from $PATH.

Linux

1. Download and install NET 8+.

2. Make sure you have write access to ~/.config.

3. Make sure dotnet is available from $PATH.

Checking Available .NET Versions

In terminal window run dotnet --list-sdks command:

# check for dotnet already installed
dotnet --list-sdks

Installation from OpenUPM (recommended)

1. Install the required software for your operating system.

2. Ensure your Unity version is 2021.3 or later.

3. Open the OpenUPM page for the plugin.

4. Click the Manual Installation button in the upper right corner and follow the instructions.

Installation from Unity Asset Store

1. Install the required software for your operating system.

2. Ensure your Unity version is 2021.3 or later.

3. Open the Charon plugin in the Unity Asset Store.

4. Click Add To My Assets.

5. Open the Unity Package Manager by navigating to Window → Package Manager.

6. Wait for the package manager to populate the list.

7. Select My Assets from the dropdown in the top left corner.

8. Select Charon from the list and click Download. If it’s already downloaded, you will see an Import option.

Installation from GitHub

1. Install the required software for your operating system.

2. Clone or download the plugin source code from the GitHub repository.

3. Create a <project-dir>/Packages/com.gamedevware.charon directory.

Overview

8

https://dotnet.microsoft.com/en-us/download
https://dotnet.microsoft.com/en-us/download
https://dotnet.microsoft.com/en-us/download
https://openupm.com/packages/com.gamedevware.charon/
https://assetstore.unity.com/packages/tools/visual-scripting/game-data-editor-charon-95117
https://github.com/gamedevware/charon-unity3d


4. Copy the plugin files from src/GameDevWare.Charon.Unity/Packages/com.gamedevware.charon
into this directory.

5. Restart Unity if necessary.

Core Concepts

Data-Driven Design Principles

Data-driven design emphasizes controlling gameplay through data rather than source code or blueprints. Game
mechanics and processes are determined by structured data files. For example, instead of embedding damage
calculations directly in the game’s source code, these are defined by data specifying weapon effects and the rules for
their application. Similarly, mission progression is not hardcoded; it is outlined in editable text files, making these
aspects of game design highly flexible. This approach not only facilitates quick adjustments during development but
also simplifies adding modding support post-release.

• Modify Everything! Data-Driven Dynamic Gameplay Effects in ‘For Honor’ (Video)

• Data-driven Design in Unreal (Article)

Understanding the Plugin’s Architecture

Plugin Assets

All game data information is stored in a JSON file within your project. The generated source code is used to load this
data into the game. Additionally, a ScriptableObject asset will be created, which can be used to access game
data from your scenes.

Whenever there is a modification in the data structure within a JSON file, it is necessary to regenerate the C# source
code and reimport the .asset file. To do this, select the .asset file and press the Synchronize button.

Working with the Plugin

Creating Game Data

To create a new game data file within the Unity Editor, open the Project window, right-click in the desired folder, and
select the Create → Game Data menu option.

1. Open the Project window and navigate to the desired folder.

2. Right-click in the Project window and select Create → Game Data.

3. Name your game data file and click the Create button.

4. Wait for the source code and assets to be created in the specified folder and for the editor to recompile the
scripts.

5. Double-click the created .asset or .gdjs file to start editing.

Overview

9

https://www.gdcvault.com/play/1024050/Modify-Everything-Data-Driven-Dynamic
https://benui.ca/unreal/data-driven-design/


Editing Game Data

To edit a game data file in the Unity Editor, open the Project window, find the corresponding .gdjs, .gdmp, or .asset
file, and double-click it. This action opens a new web browser window featuring a user interface for editing the game
data. Remember to Synchronize assets from the Inspector window after completing your edits.

Advanced Features

Localization and Multi-Language Support

Charon facilitates multi-language text support through the Localizable Text data type. When creating a
Schema, properties can be defined with various data types, including Localizable Text. Initially, all localizable
text defaults to EN-us (US English). Additional languages can be added via Project Settings →
Internationalization → Translation Languages in the Charon UI.

Exporting/importing localizable data.

Referencing Game Data in Scenes

The Charon plugin introduces a specific type for referencing documents within scenes, named
GameDataDocumentReference. This type is part of the Charon package. To create such a reference, add a field
with the GameDataDocumentReference type to your component class.

public class HeroComponent : MonoBehaviour
{
  public GameDataDocumentReference heroReference;
}

You can then configure it in the Inspector. Here is an example of a Game Data Document Reference used to point
to a Hero document:

To get an instance of a document in your game code, call the
GameDataDocumentReference.GetReferencedDocument<Hero>() method.

private void OnEnable()
{
  var hero = this.heroReference.GetReferencedDocument<Hero>();
  Debug.Log(hero.Name);
}

Work & Build Automation

To facilitate automation of work or builds, a programmatic interface for working with game data is provided. You can
read more about it on the CharonCli class documentation page.

Overview

10



Feedback

We welcome and encourage feedback, particularly bug reports and suggestions, to help improve our tool. If you have
any questions or would like to share your thoughts, please join our Discord community or reach out to us via email at
support@gamedevware.com.

See also

• Basic Navigation and User Interface Overview

• Creating Document Type (Schema)

• Filling Documents

• Frequently Asked Questions (FAQ)

• Glossary

CharonCli Overview
The CharonCli class provides a convenient interface for running dotnet charon command-line operations. It
simplifies interactions with the Charon tool, enabling developers to manage game data, automate workflows, and
integrate with Unity projects. Below is an overview of its methods grouped by purpose.

Game Data Management

• InitGameDataAsync: Initializes a GameData file.

• CreateDocumentAsync: Creates a document in the specified GameData URL.

• UpdateDocumentAsync: Updates a document in the specified GameData URL.

• DeleteDocumentAsync: Deletes a document in the specified GameData URL (by document or ID).

• FindDocumentAsync: Finds a document in the specified GameData URL by ID.

• ListDocumentsAsync: Lists documents in the specified GameData URL with optional filters and sorting.

Import and Export

• ImportAsync: Imports documents grouped by schema into a specified GameData URL.

• ImportFromFileAsync: Imports documents from a file into a specified GameData URL.

• ExportAsync: Exports documents from a GameData URL.

• ExportToFileAsync: Exports documents from a GameData URL to a file.

Localization (I18N)

• I18NImportAsync: Imports translated documents grouped by schema into a specified GameData URL.

• I18NImportFromFileAsync: Imports translated documents from a file into a specified GameData URL.

• I18NExportAsync: Exports documents for localization from a GameData URL.

• I18NExportToFileAsync: Exports documents for localization from a GameData URL to a file.

• I18NAddLanguageAsync: Adds translation languages to a GameData URL.

Patching and Backup

• CreatePatchAsync: Compares documents in two GameData URLs and creates a patch representing the
difference.

• CreatePatchToFileAsync: Compares documents in two GameData URLs and saves the patch to a file.

Overview

11

https://discord.gg/2quB5vXryd
mailto:support@gamedevware.com
https://github.com/gamedevware/charon-unity3d/blob/master/src/GameDevWare.Charon.Unity/Packages/com.gamedevware.charon/Editor/Cli/CharonCli.cs


• ApplyPatchAsync: Applies a patch to a specified GameData URL.

• ApplyPatchFromFileAsync: Applies a patch from a file to a specified GameData URL.

• BackupAsync: Backs up game data with all documents and metadata.

• BackupToFileAsync: Backs up game data to a file with all documents and metadata.

• RestoreAsync: Restores game data from a backup.

• RestoreFromFileAsync: Restores game data from a backup file.

Validation and Code Generation

• ValidateAsync: Validates all documents in a GameData URL and returns a report with issues.

• GenerateCSharpCodeAsync: Generates C# source code for loading game data into a game’s runtime.

• DumpTemplatesAsync: Dumps T4 code generation templates into a specified directory.

Tool Utilities

• GetVersionAsync: Gets the version number of the Charon tool executable.

• GetGameDataToolVersionAsync: Gets the version of the Charon tool used to create a GameData URL.

• RunCharonAsync: Runs a specified command with the Charon tool.

• RunT4Async: Processes T4 templates using the dotnet-t4 command-line tool.

See also

• Unity Plugin Overview

• CharonCli class

• Examples of CharonCli class

Migration from Legacy Version (Before 2025.1.*)

Warning

Before proceeding with the migration, ensure your project is under a source control system (e.g., Git) or
that a full backup of your project has been created. Migration involves modifying and deleting files, and
having a backup or version control ensures you can recover in case of unexpected issues.

Install the package with the new version of the plugin via the Unity Asset Store or using OpenUPM (recommended).
After installing plugin package you have two options:

Automated Migration

A window will appear offering to perform the migration automatically.

1. Click the Migrate button and wait for the process to complete.

2. Once the migration is finished, close the window if everything is successful.

3. If an error occurs, check the Console window for details and consider using the Manual Migration approach.

Overview

12

https://github.com/gamedevware/charon-unity3d/blob/master/src/GameDevWare.Charon.Unity/Packages/com.gamedevware.charon/Editor/Cli/CharonCli.cs
https://github.com/gamedevware/charon-unity3d/blob/master/src/GameDevWare.Charon.Unity/Assets/Editor/CharonExamples/CharonCliExamples.cs
https://assetstore.unity.com/packages/tools/visual-scripting/game-data-editor-charon-95117
https://openupm.com/packages/com.gamedevware.charon/?subPage=readme


Manual Migration

To migrate manually, you will need to remove the old plugin, convert, and configure the game data files:

1. Navigate to the Assets/Editor/GameDevWare.Charon folder and delete it.

2. Temporarily move all .gdjs and .gdmp files from Assets/StreamingAssets/ to Assets/.

3. Select each .gdjs or .gdmp file and click the Reimport button in the Inspector window.

4. Replace the old .asset file with the newly generated one. If the file did not exist previously, place it anywhere
within the boundaries of the .asmdef file.

5. Replace the old source code files (.cs) with the newly generated ones.

Warning

Preserve the original .meta files for .cs and .asset assets to maintain Unity resource associations and links.

See also

• Unity Plugin Overview

Migrating to Web Application
To migrate to the https://charon.live, you can do it through a backup <../web/migrating_to_web> or through the
“Connection” mechanism.

In short: you need to create an empty project in at https://charon.live, in Unity Editor in Inspector window click
Connect, and specify that you want to upload data to the https://charon.live.

Migration with Connection

Be sure to back up your local data before making any connections.

1. At https://charon.live: on the Home screen, click on Create Project.

2. Specify the project name, tags, and script language.

3. Click the Create button.

4. In the Unity Editor: select your game data .asset file in the Project window.

5. In the Inspector window, expand <Not Connected> foldout, click Connect button.

6. In the dialog that opens, click on the Profile → API Keys link.

7. At https://charon.live: a page of your profile on the API Keys management page should have opened in your
browser.

8. Click Create API Key… button.

9. Fill in the name and expiration time, then click the Create button.

10
.

Click the Copy button in the list of keys next to the newly created key labeled “New!”.

11
.

In the Unity Editor: paste the API Key into the corresponding field in the Connect Game Data window.

12
.

Check the Upload local data… checkbox, it is only available when the selected Project is empty and does not
contain any data.

13
.

Click the Upload button”.

14
.

Close Connect Game Data window

Overview

13

https://charon.live
https://charon.live
https://charon.live
https://charon.live
https://charon.live


See also

• Basics

• Charon Website

Standalone Application Overview
The standalone version of the game development tool is a desktop application that can be installed on a computer,
and it allows the user to design and model game data, as well as generate source code for it. The standalone version
is typically used by individual game developers or small development teams who want to work offline.

Prerequisites
Standalone application uses dotnet charon tool, which is a .NET Core application built for .NET 8.

Windows

1. Download and install NET 8+.

2. Make sure you have write access to %APPDATA%/Charon (C:Users%USERNAME%AppDataRoamingCharon).

MacOS

1. Download and install NET 8+.

2. Make sure you have write access to ~/Library/Application Support/Charon.

3. Make sure dotnet is available from $PATH.

Linux

1. Download and install NET 8+.

2. Make sure you have write access to ~/.config/Charon.

3. Make sure dotnet is available from $PATH.

Checking Available .NET Versions

# check for mono already installed
dotnet --list-sdks

Installation and Updates
You can use just two commands to install the command line tool, or use a bootstrap script that will check
dependencies and installed software, and then download and run the tool for you.

# install charon globally (run it once)
dotnet tool install -g dotnet-charon

# update global tool
dotnet tool update -g dotnet-charon

Overview

14

https://gamedevware.com
https://www.nuget.org/packages/GameDevWare.Charon
https://dotnet.microsoft.com/en-us/download
https://dotnet.microsoft.com/en-us/download
https://dotnet.microsoft.com/en-us/download


# run tool
dotnet charon INIT ./gamedata.json

Two bootstrap scripts which download and run latest version of Charon on your PC:

• RunCharon.bat for Windows

• RunCharon.sh for Linux or MacOS

Both scripts require the dotnet tool to be available in PATH.

1. Download one of the scripts into a local folder charon.

a. RunCharon.bat (Windows)

b. RunCharon.sh (Linux, MacOS)

2. Navigate to the local folder cd charon.

3. Run RunCharon.bat or RunCharon.sh depending on your OS.

4. Wait for the script to automatically download and upgrade dotnet-charon tool, and display help text.

5. Create an empty file named RunCharon.bat INIT gamedata.json

6. Run in standalone mode: RunCharon.bat gamedata.json

Or use following bootstrap script:

Windows

rem ##### Load and run bootstrap script #####

@echo off
mkdir Charon
cd Charon
curl -O https://raw.githubusercontent.com/gamedevware/charon/main/scripts/bootstrap/RunCharon.bat
./RunCharon.bat INIT ./gamedata.json

rem ##### Start editor #####

./RunCharon.bat ./gamedata.json --log out

Linux, MacOS

##### Load and run bootstrap script #####

mkdir Charon
cd Charon
curl -O https://raw.githubusercontent.com/gamedevware/charon/main/scripts/bootstrap/RunCharon.sh
chmod +x RunCharon.sh
        ./RunCharon.sh INIT ./gamedata.json

##### Start editor #####

./RunCharon.sh ./gamedata.json --log out

Creating and Editing Game Data
Any empty gamedata.json file could be used as starting point for standalone application launch. The editor will
automatically fill the empty file with the initial data.

Windows

./RunCharon.bat ./gamedata.json --log out

Linux, MacOS

Overview

15

https://dotnet.microsoft.com/en-us/download/dotnet
https://github.com/gamedevware/charon/blob/main/scripts/bootstrap/RunCharon.bat
https://github.com/gamedevware/charon/blob/main/scripts/bootstrap/RunCharon.sh


./RunCharon.sh ./gamedata.json --log out

After finishing your work, you could just terminate the process with CTRL+C keyboard shortcut or close terminal
window.

See also

• Nuget Package

• Bootstrap Scripts

• Basic Navigation and User Interface Overview

• Creating Document Type (Schema)

• Filling Documents

• Publication of Game Data

• Generating Source Code

• Frequently Asked Questions (FAQ)

• Glossary

Web Application Overview
The web version of the Charon provides a collaborative work environment where game designers can work together
to create engaging gameplay experiences. The core concepts of collaborative work include workspaces and
projects. A workspace is a virtual location where projects are located. The subscription and all limitations are bound
to the workspace, meaning that all projects within the workspace are subject to the same subscription and limitations.

A project is a virtual location for storing game data, localization settings, backups, branches, and members.
When a project is created,

the user becomes its owner and can invite other members to join.

Starting with a new Project

1. Visit the charon.live website and click on the Register button to create a new account.

2. Fill out the registration form with your desired username and password, and click on the “Create” button to
create your account.

3. After successfully logging in, you will be directed to the workspace page.

4. If you’re a new user, the workspace page will be empty, with no projects listed. Click on the Create project
button to create your first project.

5. On the “Create Project” page, fill in the name of your project and any other basic information you want to
include, and click on the “Create” button to create your project.

6. After creating the project, you’ll be redirected to the project’s dashboard page, which provides an overview of
the project and allows you to start modelling game data.

Overview

16

https://www.nuget.org/packages/GameDevWare.Charon
https://github.com/gamedevware/charon/tree/main/scripts/bootstrap/
https://charon.live/


See also

• Charon Website

• CLI Access to Web Project

• Migrating to Web Application

• Basic Navigation and User Interface Overview

• Creating Document Type (Schema)

• Filling Documents

• Publication of Game Data

• Generating Source Code

• Working with Source Code (C# 4.0)

• Working with Source Code (C# 7.3)

• Working with Source Code (TypeScript)

• Frequently Asked Questions (FAQ)

• Glossary

CLI Access to charon.live
The web version of the Charon provides a REST API and CLI for accessing and modifying game data. To access the
API, users need to generate an API Key in the API Keys section of their User Profile.

With the API Key, Charon can easily be integrated into existing game development workflows. For example, the API
Key can be used to export game data from the web into a local GIT repository

Step By Step

To generate an API Key:

1. Navigate to the API Keys section and click on the Generate API Key… button.

2. Copy the generated API Key.

3. Use the API Key in the `Authenticate` header to access the REST API or in the --credentials parameter
of the CLI.

See also

• Command Line Interface (CLI)

• Migrating to Web

• REST API

• DATA EXPORT Command

• DATA IMPORT Command

• GENERATE CSHARPCODE Command

Migrating to Web Application
To migrate to the web application, you only need to backup your game data in your current editor and restore it in the
web application.

In short: project settings include a backup and restore feature. You make a backup in one place, and you can restore
it in another. This is how you can transfer game data to another project.

Overview

17

https://gamedevware.com


Backup Data Step by Step

1. Open your game data in the editor (Standalone, Unity …)

2. In the bottom left corner, click on the gear icon “Settings”

3. In the left menu, select “Backup”

4. On the backup management page, click the “Backup” button

5. Choose “File” as the destination to save the backup and click “Next”

6. On the “Format” step, select “JSON” and click “Backup”

7. On the “Summary” step, click the link with a file name like backup_2023_11_10_11_27.json and save it to
your computer.

Restoring Backup in the Web Application

1. On the Home screen, click on “Create Project”

2. Specify the project name, tags, and script language

3. Click the “Create” button

4. In the left menu, select “Backup”

5. On the backup management page, click the “Restore” button

6. Choose “File” as the source of the restore and click “Next”

7. Select the input file, the one you have after the backup, such as backup_2023_11_10_11_27.json, and
click “Restore”

8. Done

Any data that was in this project at the time before the restore will be lost.

See also

• Basic Navigation and User Interface Overview

• Publication of Game Data

• Generating Source Code

• Frequently Asked Questions (FAQ)

• Glossary

Roles and Permissions
The web version of the Charon provides a system of roles and permissions to manage access and control over your
game development projects. Each role is designed to provide specific levels of access and functionality within the
platform. Here are the key roles , along with their respective permissions:

Viewer Role:

• View Documents: Users with the Viewer role can access and view documents within projects.

• Export Data: Viewers can export data from the platform.

• Access Project Settings: They can access and view project settings.
Editor Role:

• View Documents: Editors can view documents.

• Edit Documents: Editors have the ability to edit documents within projects.

• Import Data: They can import data into the platform.

Overview

18



• Access Project Settings: Similar to Viewers, Editors can access and view project settings.
Designer Role:

• Change Document Structure: Designers have the privilege to modify the structure of documents.

• View Documents: Designers can view documents.

• Edit Documents: They can edit documents.

• Import Data: Designers can import data.

• Access Project Settings: They can access and view project settings.
Administrator Role:

• Make and Restore Backups: Administrators have the authority to create and restore backups of project
data.

• Grant or Revoke Permissions: They can grant or revoke permissions for users within the project.

• Change Project Settings: Administrators can modify various project settings to tailor the environment to
their needs.

• View Documents: Administrators can view documents.

• Edit Documents: They can edit documents.

• Import Data: Administrators can import data.
Workspace Administrator and Workspace Owner Role:

• They have the same permissions as Administrators, and they also have the ability to delete and transfer
projects.

See also

• Overview

• Web-based Application

REST API
The web version of the Charon provides a experimental REST API feature.

Testing REST API

You can utilize the Swagger UI to perform test requests. In the Swagger UI, click on the Authorize button and paste
your API Key for authentication.

Working with REST API

To make requests, you will need an API Key obtained from your profile page. Add the Authorization:
Basic <api-key> header to all of your HTTP requests. Also is recommeded to provide correct User-Agent
header.

Authentication

POST /token
Authenticate with oAuth protocol.

Status Codes:
• 200 OK – Authorization granted result.

• 400 Bad Request – Authorization failed result.

POST /auth/one-time-code/

Overview

19

https://gamedevware.com?ref=documentation
https://charon.live/api/index.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1


Request one-time code for current authentication credential. It could be used as ‘x-authorization’ query parameter
instead of ‘Authorization’ header for WebSockets and download requests.

Status Codes:
• 200 OK – One-time code. It has short expiration time.

• default – Operation failure response.
Request

Headers: • Authorization – Authorization header. (Required)

POST /auth/flow/password/
Begin authentication flow with password request.

Status Codes:
• 200 OK – Authentication flow stage.

• default – Operation failure response.

POST /auth/flow/email-code/
Continue authentication flow with TOTP code from email.

Status Codes:
• 200 OK – Authentication flow stage.

• default – Operation failure response.

POST /auth/flow/api-key/
Start authentication flow with API Key.

Status Codes:
• 200 OK – Authentication flow stage.

• default – Operation failure response.

POST /auth/flow/on-behalf/
Start authentication flow on behalf of another user (Administrator only).

Status Codes:
• 200 OK – Authentication flow stage.

• default – Operation failure response.

POST /auth/flow/oauth2/{authenticationProvider}/prepare/
Prepare OAuth2 sign-in URL.

Parameters:
• authenticationProvider (string) – Type of OAuth2 provider.

Status Codes:
• 200 OK – Sign-in URL location.

• default – Operation failure response.

POST /auth/flow/oauth2/{authenticationProvider}/complete/
Complete OAuth2 authentication.

Parameters:
• authenticationProvider (string) – Type of OAuth2 provider.

Query
Parameters: • code (string) – The authorization code received from the authorization server.

• state (string) – An opaque value used by the client to maintain state between the
request and callback. (Required)

• error (string) – A single error code.

• error_description (string) – Human-readable text providing additional information.
Status Codes:

• 200 OK – Authentication flow stage.

• default – Operation failure response.

POST /token
Authenticate with oAuth protocol.

Overview

20

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Status Codes:
• 200 OK – Authorization granted result.

• 400 Bad Request – Authorization failed result.

POST /auth/one-time-code/
Request one-time code for current authentication credential. It could be used as ‘x-authorization’ query parameter
instead of ‘Authorization’ header for WebSockets and download requests.

Status Codes:
• 200 OK – One-time code. It has short expiration time.

• default – Operation failure response.
Request

Headers: • Authorization – Authorization header. (Required)

POST /auth/flow/password/
Begin authentication flow with password request.

Status Codes:
• 200 OK – Authentication flow stage.

• default – Operation failure response.

POST /auth/flow/email-code/
Continue authentication flow with TOTP code from email.

Status Codes:
• 200 OK – Authentication flow stage.

• default – Operation failure response.

POST /auth/flow/api-key/
Start authentication flow with API Key.

Status Codes:
• 200 OK – Authentication flow stage.

• default – Operation failure response.

POST /auth/flow/on-behalf/
Start authentication flow on behalf of another user (Administrator only).

Status Codes:
• 200 OK – Authentication flow stage.

• default – Operation failure response.

POST /auth/flow/oauth2/{authenticationProvider}/prepare/
Prepare OAuth2 sign-in URL.

Parameters:
• authenticationProvider (string) – Type of OAuth2 provider.

Status Codes:
• 200 OK – Sign-in URL location.

• default – Operation failure response.

POST /auth/flow/oauth2/{authenticationProvider}/complete/
Complete OAuth2 authentication.

Parameters:
• authenticationProvider (string) – Type of OAuth2 provider.

Query
Parameters: • code (string) – The authorization code received from the authorization server.

• state (string) – An opaque value used by the client to maintain state between the
request and callback. (Required)

• error (string) – A single error code.

• error_description (string) – Human-readable text providing additional information.
Status Codes:

• 200 OK – Authentication flow stage.

• default – Operation failure response.

Overview

21

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


DataSource

PUT /datasource/{dataSourceId}/transaction/
Wait for data source availability and begin new transaction. Identifier specified in request later could be
used with other request in `transaction` parameter.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 204 No Content – The transaction has started.

• default – Operation failure response.

POST /datasource/{dataSourceId}/transaction/{transactionId}/
Commit pending transaction.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

• transactionId (string) – Id or name of transaction. Optional.
Status Codes:

• 204 No Content – The transaction has been successfully completed.

• default – Operation failure response.

DELETE /datasource/{dataSourceId}/transaction/{transactionId}/
Reject pending transaction.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

• transactionId (string) – Id or name of transaction. Optional.
Status Codes:

• 204 No Content – The transaction has either been aborted or has already failed.

• default – Operation failure response.

GET /datasource/{dataSourceId}/collection/{schemaNameOrId}/
Find document by it’s id or unique property value.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • uniqueSchemaPropertyNameOrId (string) – Document unique property’s name. For

example ‘Id’. (Required)

• uniqueSchemaPropertyValue (string) – Document’s unique property value. For
example it’s ‘Id’ property. (Required)

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Found document or null.

• default – Operation failure response.

PUT /datasource/{dataSourceId}/collection/{schemaNameOrId}/
Create document.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • validationOptions (array) – Data source validation options. (Required)

• transactionId (string) – Id or name of transaction.

Overview

22

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Status Codes:
• 200 OK – Created document.

• default – Operation failure response.

POST /datasource/{dataSourceId}/collection/{schemaNameOrId}/
Update document.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • validationOptions (array) – Data source validation options. (Required)

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Updated document.

• default – Operation failure response.

DELETE /datasource/{dataSourceId}/collection/{schemaNameOrId}/
Delete document by it’s id.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • id (string) – Document’s id. (Required)

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Deleted document or null.

• default – Operation failure response.

POST /datasource/{dataSourceId}/collection/{schemaNameOrId}/documents/
List documents.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • transactionId (string) – Id or name of transaction.

Status Codes:
• 200 OK – Found documents.

• default – Operation failure response.

PUT /datasource/{dataSourceId}/collection/{schemaNameOrId}/documents/
Bulk change documents.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • validationOptions (array) – Data source validation options. (Required)

• dryRun (boolean) – Perform dry run of operation and don’t persist changes’.
(Required)

• importMode (string) – Import mode. (Required)

• transactionId (string) – Id or name of transaction.

Overview

23

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Status Codes:
• 200 OK – Created document.

• default – Operation failure response.

GET /datasource/{dataSourceId}/documents/query/
Query documents from all collections.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • query (string) – Keyword to lookup in documents. (Required)

• limit (integer) – Maximum number of documents to return.

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Found document stream where each event is instance of ‘ListResult’. Empty
results are ommited.

POST /datasource/{dataSourceId}/documents/query/
Pick multiple documents by their unique properties e.g. batched find request. Max documents per request
is - 20.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • transactionId (string) – Id or name of transaction.

Status Codes:
• 200 OK – Pick results in same order as requested.

• default – Operation failure response.

POST /datasource/{dataSourceId}/converter/raw/
Convert specified game data documents from request body to JSON format and return it without response
wrapper.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – Converted game data document.

• default – Operation failure response.

GET /datasource/{dataSourceId}/collections/raw/
Export documents from multiple collections into downloadable format without response wrapper.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • transactionId (string) – Id or name of transaction.

• exportMode (string) – Export mode. (Required)

• schemas (array) – List of schemas to export/import. Empty list mean all schemas.

• properties (array) – List of properties on schemas to export. Id property is always
exported. Empty list mean all properties.

• languages (array) – List of languages on schemas to export. Empty list mean all
languages.

• download (boolean) – Set “Content-Disposition” header in order to make the browser
download the result.

Status Codes:
• 200 OK – Exported documents.

• default – Operation failure response.

Overview

24

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


GET /datasource/{dataSourceId}/raw/
Backup data source into downloadable format without response wrapper.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • download (boolean) – Set “Content-Disposition” header in order to make the browser
download the result.

Status Codes:
• 200 OK – Exported documents.

• default – Operation failure response.

GET /datasource/{dataSourceId}/loading-progress/
Get data source’s loading progress.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – Data source’s capabilities and loading progress.

• default – Operation failure response.

GET /datasource/{dataSourceId}/stats/
Get data source’s statistics.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • transactionId (string) – Id or name of transaction.

Status Codes:
• 200 OK – Data source’s statistics.

• default – Operation failure response.

GET /datasource/{dataSourceId}/collections/
Export documents from multiple collections.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • exportMode (string) – Export mode. (Required)

• schemas (array) – List of schemas to export/import. Empty list mean all schemas.

• properties (array) – List of properties on schemas to export. Id property is always
exported. Empty list mean all properties.

• languages (array) – List of languages on schemas to export. Empty list mean all
languages.

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Exported documents.

• default – Operation failure response.

PUT /datasource/{dataSourceId}/collections/
Import documents into multiple collections.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

Overview

25

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Query
Parameters: • importMode (string) – Import mode. (Required)

• schemas (array) – List of schemas to export/import. Empty list mean all schemas.

• languages (array) – List of languages on schemas to export. Empty list mean all
languages.

• validationOptions (array) – Data source validation options. (Required)

• dryRun (boolean) – Perform dry run of operation and don’t persist changes’.
(Required)

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Import report.

• default – Operation failure response.

GET /datasource/{dataSourceId}/
Backup data source.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – Backed up data source.

• default – Operation failure response.

PUT /datasource/{dataSourceId}/
Restore data source from specified documents.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – Data source restoration result.

• default – Operation failure response.

POST /datasource/{dataSourceId}/validity/
Validadate data source with specified requirements/parameters.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • transactionId (string) – Id or name of transaction.

• validationOptions (array) – Data source validation options. (Required)
Status Codes:

• 200 OK – Data source’s configuration.

• default – Operation failure response.

POST /datasource/{dataSourceId}/source-code/
Generate source code for data source.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • download (boolean) – Set “Content-Disposition” header in order to make the browser
download the result.

Status Codes:
• 200 OK – Source code packed into .zip archive.

GET /datasource/{dataSourceId}/source-code/templates/
Get T4 templates for generating source code.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

Overview

26

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Query
Parameters: • download (boolean) – Set “Content-Disposition” header in order to make the browser

download the result.
Status Codes:

• 200 OK – Source code generation templates packed into .zip archive.

PUT /datasource/{dataSourceId}/transaction/
Wait for data source availability and begin new transaction. Identifier specified in request later could be
used with other request in `transaction` parameter.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 204 No Content – The transaction has started.

• default – Operation failure response.

POST /datasource/{dataSourceId}/transaction/{transactionId}/
Commit pending transaction.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

• transactionId (string) – Id or name of transaction. Optional.
Status Codes:

• 204 No Content – The transaction has been successfully completed.

• default – Operation failure response.

DELETE /datasource/{dataSourceId}/transaction/{transactionId}/
Reject pending transaction.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

• transactionId (string) – Id or name of transaction. Optional.
Status Codes:

• 204 No Content – The transaction has either been aborted or has already failed.

• default – Operation failure response.

GET /datasource/{dataSourceId}/collection/{schemaNameOrId}/
Find document by it’s id or unique property value.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • uniqueSchemaPropertyNameOrId (string) – Document unique property’s name. For

example ‘Id’. (Required)

• uniqueSchemaPropertyValue (string) – Document’s unique property value. For
example it’s ‘Id’ property. (Required)

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Found document or null.

• default – Operation failure response.

PUT /datasource/{dataSourceId}/collection/{schemaNameOrId}/
Create document.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Overview

27

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Query
Parameters: • validationOptions (array) – Data source validation options. (Required)

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Created document.

• default – Operation failure response.

POST /datasource/{dataSourceId}/collection/{schemaNameOrId}/
Update document.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • validationOptions (array) – Data source validation options. (Required)

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Updated document.

• default – Operation failure response.

DELETE /datasource/{dataSourceId}/collection/{schemaNameOrId}/
Delete document by it’s id.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • id (string) – Document’s id. (Required)

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Deleted document or null.

• default – Operation failure response.

POST /datasource/{dataSourceId}/collection/{schemaNameOrId}/documents/
List documents.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • transactionId (string) – Id or name of transaction.

Status Codes:
• 200 OK – Found documents.

• default – Operation failure response.

PUT /datasource/{dataSourceId}/collection/{schemaNameOrId}/documents/
Bulk change documents.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Overview

28

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Query
Parameters: • validationOptions (array) – Data source validation options. (Required)

• dryRun (boolean) – Perform dry run of operation and don’t persist changes’.
(Required)

• importMode (string) – Import mode. (Required)

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Created document.

• default – Operation failure response.

GET /datasource/{dataSourceId}/documents/query/
Query documents from all collections.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • query (string) – Keyword to lookup in documents. (Required)

• limit (integer) – Maximum number of documents to return.

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Found document stream where each event is instance of ‘ListResult’. Empty
results are ommited.

POST /datasource/{dataSourceId}/documents/query/
Pick multiple documents by their unique properties e.g. batched find request. Max documents per request
is - 20.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • transactionId (string) – Id or name of transaction.

Status Codes:
• 200 OK – Pick results in same order as requested.

• default – Operation failure response.

POST /datasource/{dataSourceId}/converter/raw/
Convert specified game data documents from request body to JSON format and return it without response
wrapper.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – Converted game data document.

• default – Operation failure response.

GET /datasource/{dataSourceId}/collections/raw/
Export documents from multiple collections into downloadable format without response wrapper.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

Overview

29

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Query
Parameters: • transactionId (string) – Id or name of transaction.

• exportMode (string) – Export mode. (Required)

• schemas (array) – List of schemas to export/import. Empty list mean all schemas.

• properties (array) – List of properties on schemas to export. Id property is always
exported. Empty list mean all properties.

• languages (array) – List of languages on schemas to export. Empty list mean all
languages.

• download (boolean) – Set “Content-Disposition” header in order to make the browser
download the result.

Status Codes:
• 200 OK – Exported documents.

• default – Operation failure response.

GET /datasource/{dataSourceId}/raw/
Backup data source into downloadable format without response wrapper.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • download (boolean) – Set “Content-Disposition” header in order to make the browser
download the result.

Status Codes:
• 200 OK – Exported documents.

• default – Operation failure response.

GET /datasource/{dataSourceId}/loading-progress/
Get data source’s loading progress.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – Data source’s capabilities and loading progress.

• default – Operation failure response.

GET /datasource/{dataSourceId}/stats/
Get data source’s statistics.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • transactionId (string) – Id or name of transaction.

Status Codes:
• 200 OK – Data source’s statistics.

• default – Operation failure response.

GET /datasource/{dataSourceId}/collections/
Export documents from multiple collections.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

Overview

30

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Query
Parameters: • exportMode (string) – Export mode. (Required)

• schemas (array) – List of schemas to export/import. Empty list mean all schemas.

• properties (array) – List of properties on schemas to export. Id property is always
exported. Empty list mean all properties.

• languages (array) – List of languages on schemas to export. Empty list mean all
languages.

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Exported documents.

• default – Operation failure response.

PUT /datasource/{dataSourceId}/collections/
Import documents into multiple collections.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • importMode (string) – Import mode. (Required)

• schemas (array) – List of schemas to export/import. Empty list mean all schemas.

• languages (array) – List of languages on schemas to export. Empty list mean all
languages.

• validationOptions (array) – Data source validation options. (Required)

• dryRun (boolean) – Perform dry run of operation and don’t persist changes’.
(Required)

• transactionId (string) – Id or name of transaction.
Status Codes:

• 200 OK – Import report.

• default – Operation failure response.

GET /datasource/{dataSourceId}/
Backup data source.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – Backed up data source.

• default – Operation failure response.

PUT /datasource/{dataSourceId}/
Restore data source from specified documents.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – Data source restoration result.

• default – Operation failure response.

POST /datasource/{dataSourceId}/validity/
Validadate data source with specified requirements/parameters.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • transactionId (string) – Id or name of transaction.

• validationOptions (array) – Data source validation options. (Required)

Overview

31

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Status Codes:
• 200 OK – Data source’s configuration.

• default – Operation failure response.

POST /datasource/{dataSourceId}/source-code/
Generate source code for data source.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • download (boolean) – Set “Content-Disposition” header in order to make the browser
download the result.

Status Codes:
• 200 OK – Source code packed into .zip archive.

GET /datasource/{dataSourceId}/source-code/templates/
Get T4 templates for generating source code.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • download (boolean) – Set “Content-Disposition” header in order to make the browser
download the result.

Status Codes:
• 200 OK – Source code generation templates packed into .zip archive.

DataSourceCapabilities

GET /datasource/{dataSourceId}/capabilities/
Get data source’s capabilities.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – Data source’s capabilities.

• default – Operation failure response.

GET /datasource/{dataSourceId}/capabilities/
Get data source’s capabilities.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – Data source’s capabilities.

• default – Operation failure response.

UserPresence

GET /datasource/{dataSourceId}/present-users/
Get list of users present in specificated data source.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – List of user presence in data source.

• default – Operation failure response.

GET /datasource/{dataSourceId}/present-users/
Get list of users present in specificated data source.

Overview

32

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – List of user presence in data source.

• default – Operation failure response.

Processes

GET /datasource/{dataSourceId}/process/
List processes.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • skip (integer) – Number of elements to skip during paging. Aka offset or start.

• take (integer) – Number of elements to take during paging. Aka limit or count.
Status Codes:

• 200 OK – Process state.

• default – Operation failure response.

GET /datasource/{dataSourceId}/process/{processId}/
Get process’s state.

Parameters:
• processId (integer) – Id of process.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Status Codes:
• 200 OK – Process state.

• default – Operation failure response.

POST /datasource/{dataSourceId}/process/{processId}/
Stop process.

Parameters:
• processId (integer) – Id of process.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • stopReason (string) – Reason why process has been stopped. (Required)

Status Codes:
• 200 OK – Stopped process state.

• default – Operation failure response.

GET /datasource/{dataSourceId}/process/{processId}/result/raw/
Get process’s execution result without response wrapper.

Parameters:
• processId (integer) – Id of process.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • download (boolean) – Set “Content-Disposition” header in order to make the browser

download the result.
Status Codes:

• 200 OK – Process result.

• default – Operation failure response.

GET /datasource/{dataSourceId}/process/
List processes.

Overview

33

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • skip (integer) – Number of elements to skip during paging. Aka offset or start.

• take (integer) – Number of elements to take during paging. Aka limit or count.
Status Codes:

• 200 OK – Process state.

• default – Operation failure response.

GET /datasource/{dataSourceId}/process/{processId}/
Get process’s state.

Parameters:
• processId (integer) – Id of process.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Status Codes:
• 200 OK – Process state.

• default – Operation failure response.

POST /datasource/{dataSourceId}/process/{processId}/
Stop process.

Parameters:
• processId (integer) – Id of process.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • stopReason (string) – Reason why process has been stopped. (Required)

Status Codes:
• 200 OK – Stopped process state.

• default – Operation failure response.

GET /datasource/{dataSourceId}/process/{processId}/result/raw/
Get process’s execution result without response wrapper.

Parameters:
• processId (integer) – Id of process.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • download (boolean) – Set “Content-Disposition” header in order to make the browser

download the result.
Status Codes:

• 200 OK – Process result.

• default – Operation failure response.

Formulas

GET /datasource/{dataSourceId}/formula/type/
List formula types.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • skip (integer) – Number of elements to skip during paging. Aka offset or start.

• take (integer) – Number of elements to take during paging. Aka limit or count.

• query (string) – Any value to search in type name.

Overview

34

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Status Codes:
• 200 OK – List of types.

• default – Operation failure response.

GET /datasource/{dataSourceId}/formula/type/
List formula types.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • skip (integer) – Number of elements to skip during paging. Aka offset or start.

• take (integer) – Number of elements to take during paging. Aka limit or count.

• query (string) – Any value to search in type name.
Status Codes:

• 200 OK – List of types.

• default – Operation failure response.

AiCompletion

POST /datasource/{dataSourceId}/completion/schema/
Suggest schema structure with specified AI tool.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – AI completion response with schema structure in natural language.

• default – Operation failure response.

POST /datasource/{dataSourceId}/completion/schema/icon/
Suggest an icon for schema using AI tool.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • iconSet (string) – Name of icon set to select from. (Required)

• schemaName (string) – Name of the schema to generate icon for. (Required)

• schemaDescription (string) – Description of the schema to generate icon for.
Status Codes:

• 200 OK – AI completion response with schema structure in natural language.

• default – Operation failure response.

POST /datasource/{dataSourceId}/completion/thread/{threadId}/
Send AI chat message to specified chat thread.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

• threadId (string) – Id of AI chat thread.
Status Codes:

• 200 OK – AI completion response with schema structure in natural language.

• default – Operation failure response.

DELETE /datasource/{dataSourceId}/completion/thread/{threadId}/
Delete existing AI chat thread.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

• threadId (string) – Id of AI chat thread.

Overview

35

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Status Codes:
• 204 No Content – Thread has been deleted.

• default – Operation failure response.

POST /datasource/{dataSourceId}/completion/schema/
Suggest schema structure with specified AI tool.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Status Codes:

• 200 OK – AI completion response with schema structure in natural language.

• default – Operation failure response.

POST /datasource/{dataSourceId}/completion/schema/icon/
Suggest an icon for schema using AI tool.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • iconSet (string) – Name of icon set to select from. (Required)

• schemaName (string) – Name of the schema to generate icon for. (Required)

• schemaDescription (string) – Description of the schema to generate icon for.
Status Codes:

• 200 OK – AI completion response with schema structure in natural language.

• default – Operation failure response.

POST /datasource/{dataSourceId}/completion/thread/{threadId}/
Send AI chat message to specified chat thread.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

• threadId (string) – Id of AI chat thread.
Status Codes:

• 200 OK – AI completion response with schema structure in natural language.

• default – Operation failure response.

DELETE /datasource/{dataSourceId}/completion/thread/{threadId}/
Delete existing AI chat thread.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

• threadId (string) – Id of AI chat thread.
Status Codes:

• 204 No Content – Thread has been deleted.

• default – Operation failure response.

MachineTranslation

POST /datasource/{dataSourceId}/translation/
Machine translate portion of game data. First language in the list is a source language.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.

Overview

36

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Query
Parameters: • schemas (array) – List of schemas to export/import. Empty list mean all schemas.

• languages (array) – List of languages on schemas to export. Empty list mean all
languages.

• translationMode (string) – Translation mode. (Required)
Status Codes:

• 202 Accepted – Translation process has been started.

• default – Operation failure response.

POST /datasource/{dataSourceId}/collection/{schemaNameOrId}/translation/
Machine translate specified document. First language in the list is a source language.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • languages (array) – List of languages on schemas to export. Empty list mean all

languages.

• translationMode (string) – Translation mode. (Required)
Status Codes:

• 200 OK – Translated document.

• default – Operation failure response.

POST /datasource/{dataSourceId}/translation/
Machine translate portion of game data. First language in the list is a source language.

Parameters:
• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches

from Project.
Query

Parameters: • schemas (array) – List of schemas to export/import. Empty list mean all schemas.

• languages (array) – List of languages on schemas to export. Empty list mean all
languages.

• translationMode (string) – Translation mode. (Required)
Status Codes:

• 202 Accepted – Translation process has been started.

• default – Operation failure response.

POST /datasource/{dataSourceId}/collection/{schemaNameOrId}/translation/
Machine translate specified document. First language in the list is a source language.

Parameters:
• schemaNameOrId (string) – Id or name of schema.

• dataSourceId (string) – Id of data source. Usually it is a branchId from one of branches
from Project.

Query
Parameters: • languages (array) – List of languages on schemas to export. Empty list mean all

languages.

• translationMode (string) – Translation mode. (Required)
Status Codes:

• 200 OK – Translated document.

• default – Operation failure response.

Preferences

GET /project/{projectId}/preferences/
Get project team-shared preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Overview

37

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Status Codes:
• 200 OK – Preferences object.

• default – Operation failure response.

PUT /project/{projectId}/preferences/
Save project team-shared preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Preferences has been saved.

• default – Operation failure response.

PATCH /project/{projectId}/preferences/
Patch project team-shared preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Patch has been applyed.

• default – Operation failure response.

GET /project/{projectId}/preferences/user/
Get project user’s preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 200 OK – Preferences object.

• default – Operation failure response.

PUT /project/{projectId}/preferences/user/
Save project user’s preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Preferences has been saved.

• default – Operation failure response.

PATCH /project/{projectId}/preferences/user/
Patch project user’s preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Patch has been applied.

• default – Operation failure response.

GET /workspace/{workspaceId}/preferences/
Get workspace team-shared preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Preferences object.

• default – Operation failure response.

PUT /workspace/{workspaceId}/preferences/
Save workspace team-shared preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 204 No Content – Preferences has been saved.

• default – Operation failure response.

PATCH /workspace/{workspaceId}/preferences/

Overview

38

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Patch workspace team-shared preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 204 No Content – Patch has been applyed.

• default – Operation failure response.

GET /workspace/{workspaceId}/preferences/user/
Get user’s workspace preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Preferences object.

• default – Operation failure response.

PUT /workspace/{workspaceId}/preferences/user/
Save user’s workspace preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 204 No Content – Preferences has been saved.

• default – Operation failure response.

PATCH /workspace/{workspaceId}/preferences/user/
Patch user’s workspace preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 204 No Content – Patch has been applyed.

• default – Operation failure response.

DELETE /preferences/user/
Reset all user’s preferences.

Status Codes:
• 204 No Content – Preferences has been reset.

• default – Operation failure response.

GET /preferences/
Get default preferences.

Status Codes:
• 200 OK – Preferences object.

• default – Operation failure response.

PUT /preferences/
Save default preferences.

Status Codes:
• 204 No Content – Preferences has been saved.

• default – Operation failure response.

PATCH /preferences/
Patch default preferences.

Status Codes:
• 204 No Content – Patch has been applyed.

• default – Operation failure response.

GET /project/{projectId}/preferences/
Get project team-shared preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Overview

39

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Status Codes:
• 200 OK – Preferences object.

• default – Operation failure response.

PUT /project/{projectId}/preferences/
Save project team-shared preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Preferences has been saved.

• default – Operation failure response.

PATCH /project/{projectId}/preferences/
Patch project team-shared preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Patch has been applyed.

• default – Operation failure response.

GET /project/{projectId}/preferences/user/
Get project user’s preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 200 OK – Preferences object.

• default – Operation failure response.

PUT /project/{projectId}/preferences/user/
Save project user’s preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Preferences has been saved.

• default – Operation failure response.

PATCH /project/{projectId}/preferences/user/
Patch project user’s preferences.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Patch has been applied.

• default – Operation failure response.

GET /workspace/{workspaceId}/preferences/
Get workspace team-shared preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Preferences object.

• default – Operation failure response.

PUT /workspace/{workspaceId}/preferences/
Save workspace team-shared preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 204 No Content – Preferences has been saved.

• default – Operation failure response.

PATCH /workspace/{workspaceId}/preferences/

Overview

40

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Patch workspace team-shared preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 204 No Content – Patch has been applyed.

• default – Operation failure response.

GET /workspace/{workspaceId}/preferences/user/
Get user’s workspace preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Preferences object.

• default – Operation failure response.

PUT /workspace/{workspaceId}/preferences/user/
Save user’s workspace preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 204 No Content – Preferences has been saved.

• default – Operation failure response.

PATCH /workspace/{workspaceId}/preferences/user/
Patch user’s workspace preferences.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 204 No Content – Patch has been applyed.

• default – Operation failure response.

DELETE /preferences/user/
Reset all user’s preferences.

Status Codes:
• 204 No Content – Preferences has been reset.

• default – Operation failure response.

GET /preferences/
Get default preferences.

Status Codes:
• 200 OK – Preferences object.

• default – Operation failure response.

PUT /preferences/
Save default preferences.

Status Codes:
• 204 No Content – Preferences has been saved.

• default – Operation failure response.

PATCH /preferences/
Patch default preferences.

Status Codes:
• 204 No Content – Patch has been applyed.

• default – Operation failure response.

User

GET /user/
Get all available users.

Overview

41

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Query
Parameters: • skip (integer) – Number of elements to skip during paging. Aka offset or start.

• take (integer) – Number of elements to take during paging. Aka limit or count.

• query (string) – Any value to search in user name or email.
Status Codes:

• 200 OK – List of users.

• default – Operation failure response.

PUT /user/
Create user with specified parameters.

Status Codes:
• 201 Created – User has been created.

• default – Operation failure response.

POST /user/public/
Get public profiles of users by their ids.

Status Codes:
• 200 OK – List of user public profiles.

• default – Operation failure response.

GET /user/me/
Get current user.

Status Codes:
• 200 OK – Found user.

• default – Operation failure response.

PUT /user/password-reset/
Request password reset.

Status Codes:
• 204 No Content – Password reset request has been accepted.

• default – Operation failure response.

POST /user/password-reset/
Change user password by using code from email.

Status Codes:
• 204 No Content – Password has been reset.

• default – Operation failure response.

GET /user/{userId}/
Get user by id.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Found user.

• default – Operation failure response.

POST /user/{userId}/
Update user with new parameters.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Updated workspace.

• default – Operation failure response.

DELETE /user/{userId}/
Strip personal information from user, quit all groups and block any access to this user.

Parameters:
• userId (string) – Id of user.

Overview

42

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Status Codes:
• 204 No Content – User has been soft-deleted.

• default – Operation failure response.

GET /user/{userId}/public/
Get user public profile by id.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Found user.

• default – Operation failure response.

POST /user/{userId}/login/password/
Change user password by using temporary code or old password.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 204 No Content – Password has been changed.

• default – Operation failure response.

POST /user/{userId}/mfa/email-code/
Configure email-code multi-factor authentication.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 204 No Content – Multi-factor authentication has been configured.

• default – Operation failure response.

DELETE /user/{userId}/login/tokens/
Revoke all issues tokens for specified user.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 204 No Content – All tokens have been revokes. It is required to re-authenticate after

this call.

• default – Operation failure response.

POST /user/{userId}/login/api-key/
Add API key login to user.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – List of workspaces.

• default – Operation failure response.

DELETE /user/{userId}/login/api-key/
Delete API key login from user.

Parameters:
• userId (string) – Id of user.

Query
Parameters: • id (string) – Id of UserLogin with API key. (Required)

Status Codes:
• 204 No Content – API key has been deleted and no longer valid.

• default – Operation failure response.

POST /user/{userId}/invitations/{invitationId}/
Accept invitation.

Parameters:
• userId (string) – Id of user.

• invitationId (string) – Id of invitation.

Overview

43

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Status Codes:
• 204 No Content – Invitation has been accepted.

• default – Operation failure response.

DELETE /user/{userId}/invitations/{invitationId}/
Decline invitation.

Parameters:
• userId (string) – Id of user.

• invitationId (string) – Id of invitation.
Status Codes:

• 204 No Content – Invitation has been dismissed.

• default – Operation failure response.

GET /user/
Get all available users.

Query
Parameters: • skip (integer) – Number of elements to skip during paging. Aka offset or start.

• take (integer) – Number of elements to take during paging. Aka limit or count.

• query (string) – Any value to search in user name or email.
Status Codes:

• 200 OK – List of users.

• default – Operation failure response.

PUT /user/
Create user with specified parameters.

Status Codes:
• 201 Created – User has been created.

• default – Operation failure response.

POST /user/public/
Get public profiles of users by their ids.

Status Codes:
• 200 OK – List of user public profiles.

• default – Operation failure response.

GET /user/me/
Get current user.

Status Codes:
• 200 OK – Found user.

• default – Operation failure response.

PUT /user/password-reset/
Request password reset.

Status Codes:
• 204 No Content – Password reset request has been accepted.

• default – Operation failure response.

POST /user/password-reset/
Change user password by using code from email.

Status Codes:
• 204 No Content – Password has been reset.

• default – Operation failure response.

GET /user/{userId}/
Get user by id.

Parameters:
• userId (string) – Id of user.

Overview

44

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Status Codes:
• 200 OK – Found user.

• default – Operation failure response.

POST /user/{userId}/
Update user with new parameters.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Updated workspace.

• default – Operation failure response.

DELETE /user/{userId}/
Strip personal information from user, quit all groups and block any access to this user.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 204 No Content – User has been soft-deleted.

• default – Operation failure response.

GET /user/{userId}/public/
Get user public profile by id.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Found user.

• default – Operation failure response.

POST /user/{userId}/login/password/
Change user password by using temporary code or old password.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 204 No Content – Password has been changed.

• default – Operation failure response.

POST /user/{userId}/mfa/email-code/
Configure email-code multi-factor authentication.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 204 No Content – Multi-factor authentication has been configured.

• default – Operation failure response.

DELETE /user/{userId}/login/tokens/
Revoke all issues tokens for specified user.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 204 No Content – All tokens have been revokes. It is required to re-authenticate after

this call.

• default – Operation failure response.

POST /user/{userId}/login/api-key/
Add API key login to user.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – List of workspaces.

• default – Operation failure response.

Overview

45

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


DELETE /user/{userId}/login/api-key/
Delete API key login from user.

Parameters:
• userId (string) – Id of user.

Query
Parameters: • id (string) – Id of UserLogin with API key. (Required)

Status Codes:
• 204 No Content – API key has been deleted and no longer valid.

• default – Operation failure response.

POST /user/{userId}/invitations/{invitationId}/
Accept invitation.

Parameters:
• userId (string) – Id of user.

• invitationId (string) – Id of invitation.
Status Codes:

• 204 No Content – Invitation has been accepted.

• default – Operation failure response.

DELETE /user/{userId}/invitations/{invitationId}/
Decline invitation.

Parameters:
• userId (string) – Id of user.

• invitationId (string) – Id of invitation.
Status Codes:

• 204 No Content – Invitation has been dismissed.

• default – Operation failure response.

Workspace

GET /workspace/
Get all available workspaces.

Query
Parameters: • skip (integer) – Number of elements to skip during paging. Aka offset or start.

• take (integer) – Number of elements to take during paging. Aka limit or count.

• query (string) – Any value to search in workspace name.
Status Codes:

• 200 OK – List of workspaces.

• default – Operation failure response.

GET /workspace/my/
Get current user’s workspaces.

Status Codes:
• 200 OK – List of known workspaces.

• default – Operation failure response.

GET /workspace/{workspaceId}/
Get workspace by id.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Found Workspace.

• default – Operation failure response.

POST /workspace/{workspaceId}/
Update workspace with new parameters.

Overview

46

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Updated workspace.

• default – Operation failure response.

PUT /workspace/{workspaceId}/administrators/
Promote member to workspace administrators.

Parameters:
• workspaceId (string) – Id of workspace.

Query
Parameters: • memberUserId (string) – Member user id. (Required)

Status Codes:
• 204 No Content – Member has been promoted to administrator.

• default – Operation failure response.

DELETE /workspace/{workspaceId}/administrators/
Demote member from workspace administrators.

Parameters:
• workspaceId (string) – Id of workspace.

Query
Parameters: • memberUserId (string) – Member user id. (Required)

Status Codes:
• 204 No Content – Member has been demoted from administrator.

• default – Operation failure response.

GET /workspace/{workspaceId}/members/
Get workspace members.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Workspace members.

• default – Operation failure response.

GET /workspace/
Get all available workspaces.

Query
Parameters: • skip (integer) – Number of elements to skip during paging. Aka offset or start.

• take (integer) – Number of elements to take during paging. Aka limit or count.

• query (string) – Any value to search in workspace name.
Status Codes:

• 200 OK – List of workspaces.

• default – Operation failure response.

GET /workspace/my/
Get current user’s workspaces.

Status Codes:
• 200 OK – List of known workspaces.

• default – Operation failure response.

GET /workspace/{workspaceId}/
Get workspace by id.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Found Workspace.

• default – Operation failure response.

POST /workspace/{workspaceId}/

Overview

47

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Update workspace with new parameters.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Updated workspace.

• default – Operation failure response.

PUT /workspace/{workspaceId}/administrators/
Promote member to workspace administrators.

Parameters:
• workspaceId (string) – Id of workspace.

Query
Parameters: • memberUserId (string) – Member user id. (Required)

Status Codes:
• 204 No Content – Member has been promoted to administrator.

• default – Operation failure response.

DELETE /workspace/{workspaceId}/administrators/
Demote member from workspace administrators.

Parameters:
• workspaceId (string) – Id of workspace.

Query
Parameters: • memberUserId (string) – Member user id. (Required)

Status Codes:
• 204 No Content – Member has been demoted from administrator.

• default – Operation failure response.

GET /workspace/{workspaceId}/members/
Get workspace members.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Workspace members.

• default – Operation failure response.

WorkspaceQuota

POST /workspace/{workspaceId}/quota-usage/
Get workspace quota usage.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Found Workspace.

• default – Operation failure response.

POST /workspace/{workspaceId}/quota-usage/
Get workspace quota usage.

Parameters:
• workspaceId (string) – Id of workspace.

Status Codes:
• 200 OK – Found Workspace.

• default – Operation failure response.

Project

GET /project/
Get all available projects.

Overview

48

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Query
Parameters: • skip (integer) – Number of elements to skip during paging. Aka offset or start.

• take (integer) – Number of elements to take during paging. Aka limit or count.

• query (string) – Any value to search in project name.
Status Codes:

• 200 OK – List of projects.

• default – Operation failure response.

PUT /project/
Create new project.

Status Codes:
• 200 OK – Created project.

• default – Operation failure response.

GET /project/my/
Get current user’s projects.

Status Codes:
• 200 OK – List of projects.

• default – Operation failure response.

GET /project/{projectId}/
Get project by id.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 200 OK – Found Project.

• default – Operation failure response.

POST /project/{projectId}/
Update project with new parameters.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 200 OK – Updated project.

• default – Operation failure response.

DELETE /project/{projectId}/
Delete project and all related data.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Project has been deleted.

• default – Operation failure response.

PUT /project/{projectId}/branch/
Create branch in project.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Branch has been created.

• default – Operation failure response.

PUT /project/{projectId}/branch/{branchName}/
Push branch content into another branch in this project.

Parameters:
• branchName (string) – Name of branch. Branches are located inside Project.

• projectId (string) – Id of project. Project are located within workspace.

Overview

49

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Status Codes:
• 204 No Content – Branch has been updated.

• default – Operation failure response.

POST /project/{projectId}/branch/{branchName}/
Update branch in project.

Parameters:
• branchName (string) – Name of branch. Branches are located inside Project.

• projectId (string) – Id of project. Project are located within workspace.
Status Codes:

• 204 No Content – Branch has been updated.

• default – Operation failure response.

DELETE /project/{projectId}/branch/{branchName}/
Delete branch in project.

Parameters:
• branchName (string) – Name of branch. Branches are located inside Project.

• projectId (string) – Id of project. Project are located within workspace.
Status Codes:

• 204 No Content – Branch has been deleted.

• default – Operation failure response.

POST /project/{projectId}/workspace/
Transfer project form one workspace to another.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Project has been transfered.

• default – Operation failure response.

PUT /project/{projectId}/members/
Invite another user into project.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Invite has been sent.

• default – Operation failure response.

DELETE /project/{projectId}/members/
Expel another user from project.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Query
Parameters: • memberUserId (string) – Member user id. (Required)

Status Codes:
• 204 No Content – Invite has been sent.

• default – Operation failure response.

POST /project/{projectId}/permissions/
Update project permissions.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Project permissions has been updated.

• default – Operation failure response.

GET /project/
Get all available projects.

Overview

50

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Query
Parameters: • skip (integer) – Number of elements to skip during paging. Aka offset or start.

• take (integer) – Number of elements to take during paging. Aka limit or count.

• query (string) – Any value to search in project name.
Status Codes:

• 200 OK – List of projects.

• default – Operation failure response.

PUT /project/
Create new project.

Status Codes:
• 200 OK – Created project.

• default – Operation failure response.

GET /project/my/
Get current user’s projects.

Status Codes:
• 200 OK – List of projects.

• default – Operation failure response.

GET /project/{projectId}/
Get project by id.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 200 OK – Found Project.

• default – Operation failure response.

POST /project/{projectId}/
Update project with new parameters.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 200 OK – Updated project.

• default – Operation failure response.

DELETE /project/{projectId}/
Delete project and all related data.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Project has been deleted.

• default – Operation failure response.

PUT /project/{projectId}/branch/
Create branch in project.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Branch has been created.

• default – Operation failure response.

PUT /project/{projectId}/branch/{branchName}/
Push branch content into another branch in this project.

Parameters:
• branchName (string) – Name of branch. Branches are located inside Project.

• projectId (string) – Id of project. Project are located within workspace.

Overview

51

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Status Codes:
• 204 No Content – Branch has been updated.

• default – Operation failure response.

POST /project/{projectId}/branch/{branchName}/
Update branch in project.

Parameters:
• branchName (string) – Name of branch. Branches are located inside Project.

• projectId (string) – Id of project. Project are located within workspace.
Status Codes:

• 204 No Content – Branch has been updated.

• default – Operation failure response.

DELETE /project/{projectId}/branch/{branchName}/
Delete branch in project.

Parameters:
• branchName (string) – Name of branch. Branches are located inside Project.

• projectId (string) – Id of project. Project are located within workspace.
Status Codes:

• 204 No Content – Branch has been deleted.

• default – Operation failure response.

POST /project/{projectId}/workspace/
Transfer project form one workspace to another.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Project has been transfered.

• default – Operation failure response.

PUT /project/{projectId}/members/
Invite another user into project.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Invite has been sent.

• default – Operation failure response.

DELETE /project/{projectId}/members/
Expel another user from project.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Query
Parameters: • memberUserId (string) – Member user id. (Required)

Status Codes:
• 204 No Content – Invite has been sent.

• default – Operation failure response.

POST /project/{projectId}/permissions/
Update project permissions.

Parameters:
• projectId (string) – Id of project. Project are located within workspace.

Status Codes:
• 204 No Content – Project permissions has been updated.

• default – Operation failure response.

Membership

GET /membership/packages/

Overview

52

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Get all membership packages.

Status Codes:
• 200 OK – List of all membership packages.

• default – Operation failure response.

GET /membership/packages/
Get all membership packages.

Status Codes:
• 200 OK – List of all membership packages.

• default – Operation failure response.

Billing

GET /billing/{userId}/account/
Get billing account by id.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Found billing account.

• default – Operation failure response.

POST /billing/{userId}/account/
Update billing information

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Updated billing account.

• default – Operation failure response.

POST /billing/{userId}/contact-request/
Request contact from sales representative.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 204 No Content – An contact request has been made.

• default – Operation failure response.

GET /billing/{userId}/payment/status/
Get status of payment for subscription for workspace.

Parameters:
• userId (string) – Id of user.

Query
Parameters: • sessionOrInvoiceId (string) – Payment session Id or invoice Id. (Required)

Status Codes:
• 200 OK – Status of payment session or invoice.

• default – Operation failure response.

POST /billing/{userId}/payment/status/
Start subscription session for workspace.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Payment action response.

• default – Operation failure response.

POST /billing/{userId}/payment/
Make payment for selected invoice.

Parameters:
• userId (string) – Id of user.

Overview

53

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Status Codes:
• 200 OK – Payment action response.

• default – Operation failure response.

POST /billing/{userId}/payment/upcoming/
Get prorated upcoming payment information.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Upcoming payment information

• default – Operation failure response.

POST /billing/{userId}/customer-portal/
Get url of customer portal for user if available.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Portal url or none.

• default – Operation failure response.

POST /billing/notification/
Accept notification from payment gate.

Status Codes:
• 204 No Content – Notification has been accepted.

• default – Operation failure response.

GET /billing/{userId}/account/
Get billing account by id.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Found billing account.

• default – Operation failure response.

POST /billing/{userId}/account/
Update billing information

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Updated billing account.

• default – Operation failure response.

POST /billing/{userId}/contact-request/
Request contact from sales representative.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 204 No Content – An contact request has been made.

• default – Operation failure response.

GET /billing/{userId}/payment/status/
Get status of payment for subscription for workspace.

Parameters:
• userId (string) – Id of user.

Query
Parameters: • sessionOrInvoiceId (string) – Payment session Id or invoice Id. (Required)

Status Codes:
• 200 OK – Status of payment session or invoice.

• default – Operation failure response.

Overview

54

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


POST /billing/{userId}/payment/status/
Start subscription session for workspace.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Payment action response.

• default – Operation failure response.

POST /billing/{userId}/payment/
Make payment for selected invoice.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Payment action response.

• default – Operation failure response.

POST /billing/{userId}/payment/upcoming/
Get prorated upcoming payment information.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Upcoming payment information

• default – Operation failure response.

POST /billing/{userId}/customer-portal/
Get url of customer portal for user if available.

Parameters:
• userId (string) – Id of user.

Status Codes:
• 200 OK – Portal url or none.

• default – Operation failure response.

Search

POST /search/
Search for users, projects, workspaces by specified keyword.

Status Codes:
• 200 OK – Search result with found search items.

• default – Operation failure response.

POST /search/
Search for users, projects, workspaces by specified keyword.

Status Codes:
• 200 OK – Search result with found search items.

• default – Operation failure response.

ResourceStorage

PUT /resourceStorage/
Create resource.

Query
Parameters: • name (string) – Filename or name of resource. (Required)

• purpose (string) – Use purpose of resource. (Required)

• mediaType (string) – Media type of resource.
Status Codes:

• 200 OK – Created resource id.

• default – Operation failure response.

Overview

55

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


GET /resourceStorage/{resourceId}/
Get resource metadata by id.

Parameters:
• resourceId (string) – Id of resource.

Status Codes:
• 200 OK – Found resource.

• default – Operation failure response.

DELETE /resourceStorage/{resourceId}/
Delete resource by id.

Parameters:
• resourceId (string) – Id of resource.

Status Codes:
• 204 No Content – Resource has been deleted.

• default – Operation failure response.

GET /resourceStorage/{resourceId}/data/
Get resource binary data by id.

Parameters:
• resourceId (string) – Id of resource.

Status Codes:
• 200 OK – Found resource.

PUT /resourceStorage/
Create resource.

Query
Parameters: • name (string) – Filename or name of resource. (Required)

• purpose (string) – Use purpose of resource. (Required)

• mediaType (string) – Media type of resource.
Status Codes:

• 200 OK – Created resource id.

• default – Operation failure response.

GET /resourceStorage/{resourceId}/
Get resource metadata by id.

Parameters:
• resourceId (string) – Id of resource.

Status Codes:
• 200 OK – Found resource.

• default – Operation failure response.

DELETE /resourceStorage/{resourceId}/
Delete resource by id.

Parameters:
• resourceId (string) – Id of resource.

Status Codes:
• 204 No Content – Resource has been deleted.

• default – Operation failure response.

GET /resourceStorage/{resourceId}/data/
Get resource binary data by id.

Parameters:
• resourceId (string) – Id of resource.

Status Codes:
• 200 OK – Found resource.

Context

GET /context/
Get page context.

Overview

56

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1


Query
Parameters: • projectName (string) – Project name of current page.

• branchName (string) – Branch name of current page.
Status Codes:

• 200 OK – Page’s context related properties.

• default – Operation failure response.

GET /context/
Get page context.

Query
Parameters: • projectName (string) – Project name of current page.

• branchName (string) – Branch name of current page.
Status Codes:

• 200 OK – Page’s context related properties.

• default – Operation failure response.

Notifications

GET /notification/
Subscribe on notifications from server. This is WebSocket endpoint, any non ‘Upgrade’ requests will fail.

Status Codes:
• 101 Switching Protocols – WebSocket upgrade were sucessful.

GET /notification/
Subscribe on notifications from server. This is WebSocket endpoint, any non ‘Upgrade’ requests will fail.

Status Codes:
• 101 Switching Protocols – WebSocket upgrade were sucessful.

Troubleshooting

PUT /app/log/
Log specified message on server. Used internally while standalone-hosted.

Status Codes:
• 204 No Content – URL has been opened (or ignored).

• default – Operation failure response.

Basic Navigation and User Interface Overview
The UI consists of a left-side menu displaying all schemas of the game data, a middle working area with a
dashboard/document list or document form, and a headline on the top with the project name and settings button.
Depending on the installation, the UI may also include a user menu.

Dashboard

The dashboard is a central hub in the game data’s user interface that provides quick access to frequently used
features. It includes quick action buttons, such as creating a new schema, export, import, as well as a list of recently
visited documents. Additionally, in the case of a web application, the dashboard may display the presence of online
members who are currently working in the same project.

Document Collection

The document collection page is place where user can view a list of all the documents of a specified schema. This
page allows users to filter, sort, and customize the list to their liking, making it easier to find the specific document
they need.

Overview

57

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5


Document Form

The document form page provides a specific edit form for a selected document. Here, users can view, edit, and save
their game data documents in a structured and organized manner. The form allows users to input data into fields that
correspond to the schema’s properties. The document form page provides a user-friendly interface for updating and
modifying game data.

See also

• Creating Document Type (Schema)

• Filling Documents

• Publishing Game Data

• Generating Source Code

Creating Document Type (Schema)

Schema

Schema is essential for organizing and defining game data in a structured framework. In the context of game data
modeling, a schema serves as a blueprint or template that establishes the structure and properties of a particular
type of data entity in a game. It defines the columns or fields that represent the various attributes of the entity, similar
to how a table has columns or a spreadsheet has cells.

Benefits of Structured Data

Data Organization

The organization of game data into logical entities and attributes is facilitated by the schema. This blueprint or
template defines the structure, properties, and relationships of different entities and attributes within the game data,
ensuring efficient storage, retrieval, and management.

Data Validation

The integrity and adherence to predefined rules of the game data are ensured through the validation capabilities of
the schema. Constraints and validations, such as data types, allowed values, and dependencies, can be defined,
preventing errors and inconsistencies in the game data.

Data Consistency

Consistency across the game data is achieved through the standardized structure and rules provided by the schema.
It enforces a consistent naming convention, attribute definitions, and relationships between entities, thereby
enhancing coherence and simplifying collaboration.

Overview

58



Data Interoperability

Interoperability and integration with external systems or tools are facilitated by a well-defined schema. By
establishing a common language and structure, the schema enables seamless data exchange and collaboration with
localization tools, analytics platforms, and asset pipelines.

Analyzing Game Requirements

This step involves analyzing the game requirements to understand the design and functionality of the game. It
includes studying the game design document and identifying key features, gameplay mechanics, and data elements
that need to be captured and represented in the game.

Identifying Schemas and Relationships

In this step, schemas and their relationships within the game are identified. Schemas can be objects, characters,
locations, items, quests, or any other significant element in the game. Relationships define how these entities are
connected or interact with each other.

Defining Schemas and Properties

Overview

59



This step involves defining schemas to represent the structure and properties of the game data. A schema serves as
a blueprint or template for a specific type of data entity, specifying its properties, attributes, and relationships.
Properties describe the characteristics and attributes of an entity, such as its name, description, stats, or any other
relevant information.

All Data Types

Date

The Date data type is used to store dates in ISO 8601 format, which includes the year, month, day, and time with
UTC time zone. This data type is particularly useful for storing information about events that occur on specific dates
or for tracking the age of entities. Since dates are stored with UTC time zone, the data can be consistently
interpreted across different time zones.

C# Type

System.DateTime

Uniqueness

May NOT be checked for uniqueness.

Format

yyyy-MM-ddTHH:mm:ss.fffZ

Example

"2017-12-27T00:00:00.000Z"

 // it is better not to store dates before this mark for compatibility reasons
"1970-01-01T00:00:00.000Z"

Document

The Document data type in game data schema is used to represent complex structures. A document can contain
multiple properties of different data types, including other documents or document collections, allowing for
hierarchical data modeling. It is important to note that the lifetime of sub-documents is tied to the lifetime of the
parent document, meaning that any changes (e.g. deletion) to the parent document will affect all of its
sub-documents.

C# Type

class

Uniqueness

May NOT be checked for uniqueness.

Example

For example, in a Dialog, each node can be a Document with dialog text, response options, and actions that occur
after a response is chosen. Each response option can be a sub-document that is another Dialog node.

{
    "Text": "Welcome to the game. What's your name?",
    "Options": [
        {
            "Text": "My name is John.",
            "Options": [
                {
                    "Text": "Hello John! What brings you here?",
                    "Options": [
                        {
                            "Text": "I'm looking for adventure.",
                            "Action": "dialog.GiveQuestAndEnd()"
                        },
                        {

Overview

60

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Coordinated_Universal_Time


                            "Text": "I'm on a mission.",
                            "Options": [/* ... */]
                        }
                    ]
                }
            ]
        },
        {
            "Text": "I prefer not to say.",
            "Action": "dialog.End()"
        }
    ]
}

Document Collection

The DocumentCollection data type is used to store an array of sub-documents, which are used to represent complex
structures. It is important to note that the lifetime of sub-documents is tied to the lifetime of the parent document,
meaning that any changes (e.g. deletion) to the parent document will affect all of its sub-documents.

C# Type

ReadOnlyList{T} where T is Schema

Uniqueness

May NOT be checked for uniqueness.

Size

May be limited in number of items. 0 - no limit.

Example

One example use case for DocumentCollection is storing a list of items in a game, such as a chest and its
contents. Each item in the chest could be represented by a sub-document containing information such as reference
to an item and its quantity.

{
    "Name": "Silver Chest",
    "Loot": [
        {
            "Item": { "Id": "Sword" },
            "Quantity": 1
        },
        {
            "Item": { "Id": "Silver" },
            "Quantity": 100
        }
    ]
}

Formula

Formula data type is a way to store and use C# expressions inside game data. It allows game developers to perform
calculations based on certain inputs and parameters that are not known until runtime. A formula can be any valid C#
expression that returns a value of any supported data type.

Formulas are typically used in situations where there are complex calculations involved, such as determining the
damage a weapon does based on various factors like the target’s resistance and the type of attack being used. By
storing these calculations as formulas, game developers can easily modify and tweak them without having to
recompile the entire game code.

During runtime, formulas can be evaluated using the values of any other properties or data types that are passed to
formula as arguments. This allows for a great deal of flexibility in designing game mechanics and balancing
gameplay.

Overview

61



For example, a formula for calculating the damage a weapon does to a target could be stored as follows:

(weaponPower * (1.0 - targetResistance)) * attackMultiplier

This formula takes the weapon power, subtracts the target’s resistance, and then multiplies the result by an attack
multiplier. The resulting value is the final amount of damage the weapon does to the target.

C# Type

class

Uniqueness

May NOT be checked for uniqueness.

Example

"target.HP < 100"
"x != 0"
"target.DoDamage(100)"
"(weapon.Damage / target.DamageResistance) / 2"

Integer

The Integer data type is a whole number data type that is limited to 64 bits. It is used to represent integers without
a fractional component. It can be used in cases where you need to store a large range of positive or negative whole
numbers, such as in-game currency or player levels.

Unlike the Number data type, integers do not have any precision caveats since they do not store decimal values.
Therefore, they are suitable for calculations that require exact values.

C# Type

System.SByte, System.Int16, System.Int32, System.Int64

Uniqueness

May be checked for uniqueness.

Size

32 or 64bit

Example

0
-1
100

Localized Text

The LocalizedText data type is used to store text that needs to be displayed in multiple languages. Unlike the
Text data type, the LocalizedText data type allows the storage of the same text in multiple languages. It supports the
whole range of UTF symbols, just like the Text data type. The LocalizedText data type is essential for games that
require localization support, and it makes it easy for game developers to manage text that needs to be displayed in
multiple languages.

C# Type

LocalizedString or System.String

Uniqueness

May NOT be checked for uniqueness.

Size

May be limited in number of characters. 0 - no limit.

Example

{"en-US": "Hello", "fr-FR": "Bonjour"}

Overview

62



Logical

The Logical data type is used to represent boolean values, i.e., values that can be either true or false. It is
commonly used in game development to represent various settings, options, or conditions.

For example, a game designer may use a Logical data type to represent whether a particular game feature is
enabled or disabled. The Logical data type can be used in combination with control flow statements, such as
conditional statements or loops, to determine the behavior of the game.

The MultiPickList data type can also be used to represent boolean values, but it allows the selection of multiple
options instead of just two. This can be useful for representing more complex options or flags that require multiple
selections. However, if the options are limited to just two, it is recommended to use the Logical data type for clarity
and simplicity.

C# Type

System.Boolean

Uniqueness

May be checked for uniqueness.

Example

true
false

Multi-Pick List

The MultiPickList data type is used when you want to allow the selection of multiple values from a predefined list
of options. It is similar to the PickList data type, but it allows for multiple selections.

MultiPickList is particularly useful when you want to replace several Logical properties that have a related
meaning with a single property. For example, instead of having three separate properties to indicate if a item can be
broken, disassembled, or sold, you can use a MultiPickList with the options “CanBeBreaken,” “CanBeDisassembled,”
and “CanBeSold.”

C# Type

enum based on System.SByte, System.Int16, System.Int32, System.Int64

Uniqueness

May be checked for uniqueness.

Size

32 or 64bit

Example

1 // internaly stored as integers
"Apple" // string values also valid

Number

The Number data type is used to represent decimal numbers. It conforms to the IEEE 754 floating-point standard
and can represent both positive and negative numbers, as well as zero. However, due to the limitations of the
floating-point representation, precision may be lost when performing certain arithmetic operations. Therefore, it is
recommended to use the Integer data type for financial calculations and other scenarios that require high precision.

Some use cases for the Number data type include representing quantities, such as the count of an items or the
amount of gold reward in the chest, or representing percentages, such as the chance of an event occurring. It can
also be used to represent measurements, such as the height of a character or the length of a weapon.

When working with Numbers in game data, it is important to ensure that the precision is appropriate for the use case.
Additionally, it may be necessary to round numbers to a certain number of decimal places to avoid displaying
unnecessarily precise values to players.

C# Type

System.Single or System.Double

Overview

63

https://en.wikipedia.org/wiki/IEEE_754


Uniqueness

May be checked for uniqueness.

Size

32 or 64bit

Example

3.14
0.21
-3.14

Pick List

PickList is a data type used to define a list of pre-defined options for a property. It allows the user to select only
one option from the given list. The options can be defined as a string, and the list can contain any number of options.

PickList data type is commonly used to define properties such as gender, language, or country, where there are a
limited number of options to choose from. It provides a convenient way to standardize the data, and also helps to
prevent errors or inconsistencies in the data.

For example, in a game where the player can choose a character class, the PickList data type can be used to
define the available options, such as “Warrior,” “Mage,” or “Rogue.” This ensures that the player can only choose
from the available options and helps to prevent invalid inputs.

C# Type

enum based on System.SByte, System.Int16, System.Int32, System.Int64

Uniqueness

May be checked for uniqueness.

Size

32 or 64bit

Example

1 // internaly stored as integers
"Apple" // string values also valid

Reference

The Reference data type allows the creation of non-embedding relationships between documents. A reference is
essentially a pointer to another document, using that document’s Id as a key. This allows for easier linking between
related documents, without having to embed one document inside another.

When using a Reference, the referenced documents are not stored within the parent document, but rather as
references to their respective locations. This can be useful when dealing with large, complex data sets where it’s
more efficient to reference data than to embed it. Additionally, this data type can help enforce data integrity by
ensuring that references to other documents are valid.

For example, in a game, a Chest with loot table might have a reference to a specific inventory Item document, rather
than having the entire Item embedded inside the Chest document. This makes it easier to manage the loot
separately of items and maintain the relationship between the Chest, loot table and and the Item.

C# Type

Reference{T} or T where T is Schema

Uniqueness

May NOT be checked for uniqueness.

Example

{ "Id": "Sword" }
"Sword" // just raw Id is also accepted

Overview

64



Reference Collection

The ReferenceCollection data type is used to create non-embedded relationships between documents. It allows
for referencing multiple documents of the same type from within another document.

When using a ReferenceCollection, the referenced documents are not stored within the parent document, but
rather as references to their respective locations. This can be useful when dealing with large, complex data sets
where it’s more efficient to reference data than to embed it. Additionally, this data type can help enforce data integrity
by ensuring that references to other documents are valid.

For example, a game might have a collection of quests, each of which references a collection of objectives. The
objectives might be stored in a separate collection for purpose rof e-use, and can be referenced by the quest
document using the ReferenceCollection data type.

C# Type

ReadOnlyList{T} or ReadOnlyList{Reference{T}} where T is Schema

Uniqueness

May NOT be checked for uniqueness.

Size

May be limited in number of items. 0 - no limit.

Example

[{ "Id": "Sword" }, { "Id": "Gold" }]
["Sword", "Gold"] // just raw Ids are also accepted

Text

The Text data type is used to store simple text values in game data. Unlike the LocalizedText data type, Text does
not have support for multiple translations of the same text. Instead, it allows for the storage of any UTF symbol in a
single language. This data type is useful for fields that do not require localization, such as character names, item
descriptions, or game lore.

C# Type

System.String

Uniqueness

May be checked for uniqueness (case sensitive for uniqueness purposes).

Size

May be limited in number of characters. 0 - no limit.

Example

"Hello world!"

Time

The Time data type in game data is equivalent to the TimeSpan data type in C#. It is used to store a duration or a
time interval, such as the time it takes to complete a task or the length of a cutscene in a game. The Time data type
is represented as a string in the format HH:mm:ss, where HH is the number of hours, mm is the number of minutes,
and ss is the number of seconds.

For example, if a task takes 2 hours and 30 minutes to complete, the Time data type value would be 02:30:00.

C# Type

System.TimeSpan

Uniqueness

May NOT be checked for uniqueness.

Format

[DD.]HH:mm:ss or <number-of-seconds>

Overview

65



Example

"02:30:00" // 2 hours and 30 minutes
"1.00:00:00" // 1 day
60 // 60 seconds
120 // two minutes

"-00:30:00" // could be negative

Selecting the proper data type is important in order to ensure that data is correctly and efficiently stored and used in
the game. Each data type has its own specific purpose and characteristics, which should be considered when
choosing the appropriate type for a given property.

For example, if a property needs to store a text value, the Text data type would be appropriate. If the text needs to
be translated into multiple languages, the LocalizedText data type would be the best choice.

Similarly, if a property needs to store a numeric value, the Number or Integer data types would be appropriate
depending on the type of number being stored.

The PickList and MultiPickList data types are useful for properties that have a limited set of values, such as a
list of game items or character classes.

The Document and DocumentCollection data types are useful for storing complex data that may contain multiple
fields or properties.

Ultimately, selecting the proper data type ensures that game data is properly structured, and helps to prevent errors
and inconsistencies in the game.

Table with example

Data Type Description Example

Text A line of text. “Hello, world!”

LocalizedText A localized text. {“en-US”: “Hello”, “fr-FR”:
“Bonjour”}

Logical A true/false value. True

Time A time span. “1.00:00:00”

Date A specific date. “2017-12-27T00:00:00.000Z”

Number A decimal number. 3.14

Integer A whole number. 42

PickList A list of pre-defined values. “Red”

MultiPickList A list of pre-defined values that can have
multiple selections.

“Apple, Banana, Cherry”

Document An embedded document. { “Id”: “Sword”, “Name”: “Rusty
Sword” }

DocumentCollection A collection of embedded documents. [{ “Id”: “Sword”, “Name”: “Rusty
Sword” }]

Reference A reference to another document. { “Id”: “Sword”}

ReferenceCollection A collection of references to other
documents.

[{ “Id”: “Sword” }]

Formula A C#-like expression used to calculate
something.

“target.HP < 100”

See also

• Implementing Inheritance

Overview

66



• Filling Documents

• Publishing Game Data

• Generating Source Code

Filling Documents
Once the game data structure has been defined, there are several methods available for creating and populating
game entities. One option is to import game data from other sources, such as tables or JSON files. Another option is
to generate data using external tools and import it into the editor. Finally, data can be added gradually as
development progresses using the game data editor.

Importing JSON files

JSON files can be imported via the user interface by following these steps:

1. Navigate to the document collection page.

2. Click on Actions → Import....

3. Select the JSON file and follow the steps in the import wizard.

See structure requirements.

Exporting to Spreadsheet and Importing Back

To export game data to a spreadsheet for editing and then import it back, follow these steps:

1. Navigate to the document collection page.

2. Click on Actions → Export To → Spreadsheet (.xlsx) to export the data to a spreadsheet file.

3. Open the downloaded file and make the necessary edits.

4. Import the modified data back into the system:

a. Drag and drop the edited file onto the document collection page.

b. Alternatively, click on Actions → Import... and follow the steps in the import wizard to select
and import the modified file.

Adding New Document

To create a new document using the user interface, follow these steps:

1. Navigate to the document collection page.

2. Click on the Create button.

3. Fill in the required fields in the form provided.

4. Click Save to save the new document.

See also

• Publishing Game Data

• Generating Source Code

Generating Source Code
The process of generating source code allows game data to be used inside a game. This process involves specifying
the language (e.g. C#) and various generation parameters/optimizations. It can be done from both the project’s
dashboard user interface and the command-line interface (CLI).

Features

Overview

67



Feature C# TypeScript C++ (UE) Haxe

JSON Format x x x x

MessagePack
Format

x x x x

Language Switch x x x x

Patching x x x x

Formulas x x

By Unique Value
Indexing

x x

Using Project’s Dashboard UI

To generate source code from the dashboard, follow these steps:

1. Go to the dashboard of the project where you want to generate source code.

2. Click on the Generate Source Code button.

3. Choose the language you want to generate the source code in.

4. Specify any generation parameters required.

5. Click on the Generate button to initiate the process.

6. Download archive file with generated source code.

Using Command-Line Interface (CLI)

To generate source code from the CLI, follow these steps:

1. Open the command-line interface.

2. Navigate to the game data’s directory.

3. Use the GENERATE <SOURCECODE> command to generate the source code, specifying the target language
and any generation parameters require.

Example

dotnet charon GENERATE CSHARPCODE --dataBase "c:\my app\gamedata.json" --namespace "MyGame.Parameters" --outputDirectory "c:\my app\scripts"

• Use the --outputDirectory parameter to specify the location where generated files will be saved.

• Use the --namespace and --gameDataClassName parameters to adjust the signature of generated classes.

• Use the --splitFiles parameter to generate multiple files instead of one large one.

• Use the --clearOutputDirectory parameter to clear the output directory from generated files when
re-generating source code.

Once the process is complete, the generated source code will be available at --outputDirectory.

See also

• Publishing Game Data

• Working with Source Code (C# 4.0)

• Working with Source Code (C# 7.3)

• Working with Source Code (TypeScript)

• Working with Source Code (UE C++)

• Working with Source Code (Haxe)

Overview

68



• Command Line Interface (CLI)

• GENERATE CSHARPCODE Command

• GENERATE TYPESCRIPTCODE Command

• GENERATE UECPP Command

• GENERATE HAXE Command

Implementing Inheritance
Inheritance is a familiar tool for programmers when working with shared behavior or data. Unfortunately, it is not
natively supported in Charon. However, you can achieve similar functionality using alternative approaches.

For example, imagine you have three different document types: Armor, Weapon, and Shield. You want to include
all these items in a Shop list of sellable goods. In traditional inheritance, you could create a base type to unify these
documents and refer to it.

Without inheritance, here are three possible approaches:

Overview

69



1. Composition

Extract the shared data from all sellable item types into a separate document type called Item. Each sellable
document (e.g., Armor, Weapon, Shield) should include an embedded Item document containing store-relevant
information. In the Shop list of sellable goods, you can store references to Item documents.

2. Merging

Alternatively, combine the three document types (Armor, Weapon, and Shield) into a single document type called
Item. This document will contain fields for all three original types, along with an additional Type field to specify the
item’s category. The Shop list can then store references to these unified Item documents.

Overview

70



3. Aggregation

As a less elegant alternative, introduce a ShopItem type with fields referencing all possible document types (Armor,
Weapon, and Shield). In each ShopItem document, only one of these fields will be filled, depending on the item’s
type. The Shop list can then reference ShopItem documents.

Conclusion

Each of these methods has its trade-offs in terms of simplicity, flexibility, and performance. Choosing the right
approach depends on your application’s requirements and the expected complexity of your data model.

See also

• Creating Document Type (Schema)

• Filling Documents

• Publishing Game Data

• Generating Source Code

Overview

71



Publishing Game Data
The publication process is a crucial step in preparing game data for usage inside the game. This process involves
removing unused data, unused localization, and exporting data in a supported format - JSON or MessagePack. This
documentation will provide an overview of how to perform the publication process from both the project’s dashboard
user interface and the command-line interface (CLI).

Using Project’s Dashboard UI

To perform the publication process from the project’s dashboard UI, please follow the steps below:

1. Navigate to the project’s dashboard page.

2. Click on the Publish link.

3. Choose the format you want to export your data in - JSON or Message Pack.

4. Select the language(s) you want to publish.

5. Click on the Finish button to initiate the publication process.

6. Download the file.

Using Command-Line Interface (CLI)

To perform the publication process from the CLI, please follow the steps below:

1. Open the command-line interface.

2. Navigate to the game data’s directory.

3. Use the DATA EXPORT command to publish the game data.

Example

dotnet charon DATA EXPORT --dataBase ".\gamedata.json" --mode publication --languages {en-US} --output ".\StreamingAssets\gamedata_pub.json" --outputFormat json

• Use the --languages parameter to specify the language(s) you want to publish. Or omit parameter to publish
all languages.

• Use the --outputFormat parameter to specify the export format - json or msgpack.

See also

• Generating Source Code

• Working with Source Code (C# 4.0)

• Working with Source Code (C# 7.3)

• Working with Source Code (TypeScript)

• Command Line Interface (CLI)

• DATA EXPORT Command

Working with Source Code (C# 4.0)

Warning

This is deprecated code generator and shouldn’t be used in new projects.

Accessing game data during runtime is possible by utilizing the generated source code.

Overview

72



This section provides examples using default class names, but it is possible to customize class names during the
source code generation process. Additionally, this customization allows to avoid naming collisions with existing code.

Loading Game Data

The following C# code creates GameData class and loads your game data into memory.

using System.IO;

var fileStream = File.OpenRead("gamedata.json");
var gameData = new GameData(fileStream, GameData.Format.Json);
fileStream.Dispose();

The file gamedata.json could be published game data or original database file (.gdjs or .gdmp).

Accessing Documents

You can access your documents as a list:

var characters = gameData.GetCharacters() // -> ReadOnlyList<Character>
var characters = gameData.GetCharacters(onlyRoot: true) // -> ReadOnlyList<Character>

Or you can access specific documents by their Id or Unique properties:

var character = gameData.GetCharacter(characterId); // -> Character
var character = gameData.GetCharacterByName(characterName); // -> Character

Settings schemas are accessed by name:

var resetTime = gameData.LootSettings.ResetTime; // -> TimeSpan

Formulas

Formulas are executed with Invoke method:

var reward = gameData.LootSettings.RewardFormula.Invoke()  // -> int

Formula’s parameters are passed as arguments of Invoke method.

Generated Code Extensions

When generating source code for game data, the resulting C# classes are declared as partial. This means that the
classes can be extended by the programmer to add custom functionality.

For example, let’s say that you have generated a GameData class for your game data. This class contains properties
and methods for accessing and manipulating the data. However, you want to add some custom functionality to this
class, such as a method for getting specific documents by criteria.

To do this, you can create a new C# file and declare a partial class with the same name as the generated GameData
class. You can then define your custom method in this class, and it will be merged with the generated class at
compile time.

Here is an example of how this could look:

In this example, the GameData class is declared as partial, and two partial classes are defined with the same name:
one generated by the source code generation process and one containing custom code added by the programmer.

By using partial classes in this way, you can extend the functionality of the generated classes without modifying the
generated code directly. This allows you to keep your custom code separate from the generated code, making it
easier to maintain and update your game data classes over time.

There is also two extension points on GameData class:

partial void OnBeforeInitialize(); // Called after loading the data into lists and dictionaries and before processing references and marking documents read-only.
partial void OnInitialize(); // Called after loading and prepping all data.

Overview

73

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods


See also

• Generating Source Code

• GENERATE CSHARPCODE Command

Working with Source Code (C# 7.3)
Accessing game data during runtime is possible by utilizing the generated source code.

This section provides examples using default class names, but it is possible to customize class names during the
source code generation process. Additionally, this customization allows to avoid naming collisions with existing code.

Loading Game Data

The following C# code creates GameData class and loads your game data into memory.

using System.IO;

var fileStream = File.OpenRead("RpgGameData.gdjs"); // or .json
var gameData = new GameData(fileStream, new Formatters.GameDataLoadOptions {
  Format = Formatters.Format.Json,
  // Patches = new [] { patchStream1, patchStream2, ... }
});
fileStream.Dispose();

The file RpgGameData.gdjs could be published game data or original database file (.gdjs or .gdmp).

Accessing Documents

You can access your documents as a list:

var allHeroes = gameData.AllHeroes.AsList // -> IReadOnlyList<Hero>
var heroes = gameData.Heroes.AsList // -> IReadOnlyList<Hero>

Or you can access specific documents by their Id or Unique properties:

var heroById = gameData.AllHeroes.Get(heroId); // -> Hero
var heroByName = gameData.AllHeroes.ByName().Get(heroName); // -> Hero

Settings schemas are accessed by name:

var startingHeroes = gameData.StartingSet.Heroes; // -> IReadOnlyList<Hero>

Formulas

Formulas are executed with Invoke method:

var reward = gameData.LootSettings.RewardFormula.Invoke()  // -> int

Formula’s parameters are passed as arguments of Invoke method.

Generated Code Extensions

When generating source code for game data, the resulting C# classes are declared as partial. This means that the
classes can be extended by the programmer to add custom functionality.

For example, let’s say that you have generated a GameData class for your game data. This class contains properties
and methods for accessing and manipulating the data. However, you want to add some custom functionality to this
class, such as a method for getting specific documents by criteria.

To do this, you can create a new C# file and declare a partial class with the same name as the generated GameData
class. You can then define your custom method in this class, and it will be merged with the generated class at
compile time.

Here is an example of how this could look:

Overview

74

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/partial-classes-and-methods


In this example, the GameData class is declared as partial, and two partial classes are defined with the same name:
one generated by the source code generation process and one containing custom code added by the programmer.

By using partial classes in this way, you can extend the functionality of the generated classes without modifying the
generated code directly. This allows you to keep your custom code separate from the generated code, making it
easier to maintain and update your game data classes over time.

There is also two extension points on GameData class:

partial void OnInitialize(); // Called after loading and prepping all data.

See also

• Generating Source Code

• GENERATE CSHARPCODE Command

Working with Source Code (Haxe)
Accessing game data during runtime is possible by utilizing the generated source code.

This section provides examples using default class names, but it is possible to customize class names during the
source code generation process. Additionally, this customization allows to avoid naming collisions with existing code.

Loading Game Data

The following Haxe code creates GameData class and loads your game data into memory.

import GameData;
import Formatters;
import haxe.io.Path;
import sys.io.File;

var input = File.read("RpgGameData.gdjs"); // or .json
var options = new GameDataLoadOptions();
options.format = GameDataFormat.Json;
options.leaveInputsOpen = false;
// options.patches <-- put patches here
var gameData = new GameData(input, options);

The file RpgGameData.gdjs could be published game data or original database file (.gdjs or .gdmp).

Accessing Documents

You can access your documents as a list:

var allHeroes = gameData.heroesAll.list // -> ReadOnlyArray<Hero>
var heroes = gameData.heroes.list // -> ReadOnlyArray<Hero>

Or you can access specific documents by their id or Unique properties:

Settings schemas are accessed by name:

var startingHeroes = gameData.startingSet.heroes; // -> ReadOnlyArray<Hero>

Formulas

Formulas are currently not supported.

See also

• Generating Source Code

• GENERATE HAXE Command

Overview

75



Working with Source Code (Type Script)
Accessing game data during runtime is possible by utilizing the generated source code.

This section provides examples using default class names, but it is possible to customize class names during the
source code generation process. Additionally, this customization allows to avoid naming collisions with existing code.

Loading Game Data

The following Type Script code creates GameData class and loads your game data into memory.

import { GameData } from './game.data';
import { Formatters } from './formatters';

// Node.js
import { readFileSync } from 'fs';
const gameDataStream = readFileSync(gameDataFilePath);

// Blob or File
const gameDataStream = gameDataFileBlob.arrayBuffer();

// XMLHttpRequest (XHR)
// gameDataRequest.responseType -> "arraybuffer"
const gameDataStream = gameDataRequest.response;

const gameData = new GameData(gameDataStream, {
  format: Formatters.GameDataFormat.Json,
  // patches: [patchStream1, patchStream2, ...]
});

The content of gameDataStream could be published game data or original database file (.gdjs or .gdmp).

Accessing Documents

You can access your documents as a list:

let heroes = gameData.heroesAll; // all heroes from all documents -> readonly Hero[]
let heroes = gameData.heroes; // heroes only from root collection -> readonly Hero[]

Or you can access specific documents by their Id or Unique properties:

let hero = gameData.heroesAll.find(heroId); // -> Hero | undefined
let hero = gameData.heroesAll.withOtherKey('Name').find(heroName); // -> Hero | undefined

Settings schemas are accessed by name:

let resetTime = gameData.lootSettings.resetTime; // -> TimeSpan

Formulas

Formulas inherit the Function type and can be invoked as-is or with invoke method:

var reward = gameData.lootSettings.rewardFormula()  // -> number
// or
var reward = gameData.lootSettings.rewardFormula.invoke()  // -> number

Formula’s parameters are passed as arguments of invoke method.

Any non-game data related types are imported from `formula.known.types.ts, which should be created by the
developer and have all required types exported. Here is an example of a formula.known.types.ts file:

import { MyFormulaContext } from '../my.formula.context';

// example of MyFormulaContext type.
export MyFormulaContext;

Overview

76



// example of Assets.Scripts.CheckContext.
export namespace Assets.Scripts {
  export class CheckContext {
    myField: string;
  }
}

See also

• Generating Source Code

• GENERATE TYPESCRIPTCODE Command

Working with Source Code (UE C++)

Warning

The source code for Unreal Engine requires a plugin to be installed to function. If you get compilation errors,
make sure the plugin is installed and enabled.

Accessing game data during runtime is possible by utilizing the generated source code.

This section provides examples using default class names, but it is possible to customize class names during the
source code generation process. Additionally, this customization allows to avoid naming collisions with existing code.

Loading Game Data

The following C++ code creates UGameData class and loads your game data into memory.

IFileManager& FileManager = IFileManager::Get();

const FString GameDataFilePath = TEXT("./RpgGameData.gdjs");  // or .json
const TUniquePtr<FArchive> GameDataStream = TUniquePtr<FArchive>(FileManager.CreateFileReader(*GameDataFilePath, EFileRead::FILEREAD_None));

UGameData* GameData = NewObject<UGameData>();

FGameDataLoadOptions Options;
Options.Format = EGameDataFormat::Json;
// Options.Patches.Add(PatchStream1);
// Options.Patches.Add(PatchStream2);
// ...

if (!GameData->TryLoad(GameDataStream.Get(), Options))
{
  // Handle failure
}

The file RpgGameData.gdjs could be published game data or original database file (.gdjs or .gdmp).

Accessing Documents

You can access your documents as a list:

auto AllHeroes = GameData->AllHeroes // -> TMap<string, UHero>
auto Heroes = GameData->Heroes // -> TMap<string, UHero>

Settings schemas are accessed by name:

Overview

77

https://www.fab.com/listings/8cdfd7af-e1e9-4c97-b28d-d4b196767824
file:///home/runner/work/charon/unreal_engine/overview


auto StartingHeroes = GameData->StartingSet.Heroes; // -> TMap<string, UHero>

Formulas

Formulas are currently not supported.

See also

• Generating Source Code

• GENERATE UECPP Command

Command Line Interface (CLI)
Most of Charon functionality could be accessed via CLI commands. The application itself uses the getops syntax.
You should be familiar with terminal on your OS to fully tap potential of CLI.

Installation

Download and install NET 8+.

Option 1: dotnet tool (recommended)

The easiest way to install is to use the infrastructure provided by the dotnet tool.

# install charon globally
dotnet tool install -g dotnet-charon

# install charon in current working directory
dotnet tool install dotnet-charon --local --create-manifest-if-needed

To update current tool use following commands:

# update global tool
dotnet tool update --global dotnet-charon

# update local tool
dotnet tool update dotnet-charon --local

Option 2: Bootstrap scripts

Alternatively, you can use one of two bootstrap scripts:

• RunCharon.bat (Windows)

• RunCharon.sh (Linux, MacOS)

Both scripts require the dotnet tool to be included in the system PATH. The scripts handle the installation of the
Charon tool and ensure it stays up to date.

Windows

mkdir Charon
cd Charon
curl -O https://raw.githubusercontent.com/gamedevware/charon/main/scripts/bootstrap/RunCharon.bat

.\RunCharon.bat DATA EXPORT --help
#               ^
#      your command goes here

Linux, MacOS

mkdir Charon
cd Charon

Overview

78

https://en.wikipedia.org/wiki/Getopts
https://dotnet.microsoft.com/en-us/download
https://learn.microsoft.com/en-us/dotnet/core/tools/global-tools
https://github.com/gamedevware/charon/blob/main/scripts/bootstrap/RunCharon.bat
https://github.com/gamedevware/charon/blob/main/scripts/bootstrap/RunCharon.sh
https://dotnet.microsoft.com/en-us/download


curl -O https://raw.githubusercontent.com/gamedevware/charon/main/scripts/bootstrap/RunCharon.bat

chmod +x ./RunCharon.sh

./RunCharon.sh DATA EXPORT --help
#               ^
#      your command goes here

Command Syntax

Commands have the following syntax:

dotnet charon COMMAND --parameterName <parameter-value>

# parameters can have more than one value.
# Use space to separate values
dotnet charon EXPORT --schemas Item Armor "Project Settings" Quest

# if your value contains a space, put it inside the quotation marks.
# Escape characters and other rules depend on the OS you are running.
dotnet charon "c:\my application\my path.txt"

# some parameters don't require a value (e.g. flag).
dotnet charon VERSION --verbose

Absolute and relative paths

When running commands, it’s crucial to be aware of whether you are using absolute or relative paths to files.

1. Absolute Path: An absolute path defines a file or directory’s location in relation to the root directory. In Linux
and macOS, it starts from the root /, while in Windows, it begins with a drive letter (like C:\).

• Example for Linux/macOS: /usr/local/bin

• Example for Windows: C:\Program Files\mono

2. Relative Path: A relative path references a file or directory in relation to the current working directory, without
starting with a root slash or drive letter.

• Example: If currently in /home/user/Documents, a file in /home/user/Documents/Projects would
have the relative path Projects/FileName.

• Windows Command Prompt: Paths use backslashes (\). Absolute paths start with a drive letter (like
C:\Users\Name), while relative paths use the file name or paths like subfolder\file.txt.

• macOS/Linux Terminal: Paths are denoted with forward slashes (/). Absolute paths begin from the root (/),
and relative paths use ./ for the current directory or ../ to go up one level.

Getting Help Text

To display list of available commands add –help or /?.

dotnet charon --help

#> Usage: dotnet charon <action> [--<param> || (--<param> <paramValue> ...) ...]
#>
#> Verbs:
#>  DATA        Data manipulation actions.
#>  GENERATE    Code generation actions.
#>  VERSION     Print version.

dotnet charon DATA EXPORT --help

#> Usage:

Overview

79

https://en.wikipedia.org/wiki/Working_directory


#>   DATA EXPORT --dataBase <URI> [--schemas [<TEXT>]] [--properties [<TEXT>]] [--languages [<TEXT>]] [--output <TEXT>
#>               ] [--outputFormat <TEXT>] [--outputFormattingOptions [<TEXT>]] [--mode <EXPORTMODE>] [--credentials [<
#>               TEXT>]]

Apply Patch

Applies patch created with DATA CREATEPATCH command to a game data.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA APPLYPATCH --dataBase "c:\my app\gamedata.json" --input "c:\my app\gamedata_patch.json" --inputFormat json

# remote game data
dotnet charon DATA APPLYPATCH --dataBase "https://charon.live/view/data/My_Game/develop/" --input "./gamedata_patch.json" --inputFormat json --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--input Path to a file with patch to apply. Alternatively, you can use Standart Input
or URL <remote_input_output>.

# standart input (default)
--input in
--input con

# absolute path (windows)
--input "c:\my app\gamedata_patch.json"

# absolute path (unix)
--input "/user/data/gamedata_patch.json"

# relative path (universal)
--input "./gamedata_patch.json"

# remote location (HTTP)
--input "http://example.com/gamedata_patch.json"

# remote location with authentication (FTP)
--input "ftp://user:password@example.com/gamedata_patch.json"

Overview

80

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)


--inputFormat Format of imported data.

# Auto-detect by extension (default)
--inputFormat auto

# JSON
--inputFormat json

# BSON
--inputFormat bson

# Message Pack
--inputFormat msgpack

# XML (removed in 2025.1.1)
--inputFormat xml

--inputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Create Backup

Backs up game data to a specified file. Saved data could be later used with DATA RESTORE command.
Also this command can be used to convert game data into different format.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA BACKUP --dataBase "c:\my app\gamedata.json" --output "c:\my app\backup.msgpkg" --outputFormat msgpack

# remote game data
dotnet charon DATA BACKUP --dataBase "https://charon.live/view/data/My_Game/develop/" --output "./backup.msgpkg" --outputFormat msgpack --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

Overview

81



--output Path to a backup file. If the file exists, it will be overwritten. The
directory must already exist. Alternatively, you can output to Standard
Error, Standard Output, /dev/null, or a URL.

# standart output (default)
--output out
--output con

# standart error
--output err

# null device
--output null

# absolute path (windows)
--output "c:\my app\backup.json"

# absolute path (unix)
--output "/user/data/backup.json"

# relative path (universal)
--output "./backup.json"

# remote location (HTTP)
--output "http://example.com/backup.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/backup.json"

--outputFormat Format of backed up data.

# JSON (default)
--outputFormat json

# Message Pack
--outputFormat msgpack

--outputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Output

The back up data follows the general game data structure.

Create Document

Creates a new document. For a bulk creations use DATA IMPORT command with --mode create.
Only the first document from the --input will be processed.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA CREATE --dataBase "c:\my app\gamedata.json" --schema Item --input "c:\my app\item.json" --inputFormat json

# remote game data
dotnet charon DATA CREATE --dataBase "https://charon.live/view/data/My_Game/develop/" --schema Item --input "./item.json" --inputFormat json --credentials "<API-Key>"

Overview

82

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--schema Name or identifier of the type (schema) of the new
document.

# name
--schema Item

# id
--schema 55a4f32faca22e191098f3d9

--input Path to a file with document. Alternatively, you can use Standart
Input or URL.

# standart input (default)
--input in
--input con

# absolute path (windows)
--input "c:\my app\item.json"

# absolute path (unix)
--input "/user/data/item.json"

# relative path (universal)
--input "./item.json"

# remote location (HTTP)
--input "http://example.com/item.json"

# remote location with authentication (FTP)
--input "ftp://user:password@example.com/item.json"

--inputFormat Format of imported data.

# Auto-detect by extension (default)
--inputFormat auto

# JSON
--inputFormat json

# BSON
--inputFormat bson

# Message Pack
--inputFormat msgpack

# XML (removed in 2025.1.1)
--inputFormat xml

--inputFormattingOptions Additional options for specified format.

Overview

83

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)
https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)


--output Path to a created document file. If the file exists, it will be overwritten. The
directory must already exist. Alternatively, you can output to Standard Error,
Standard Output, /dev/null, or a URL.

# standart output
--output out
--output con

# standart error
--output err

# null device (default)
--output null

# absolute path (windows)
--output "c:\my app\created_item.json"

# absolute path (unix)
--output /user/data/created_item.json

# relative path (universal)
--output "./created_item.json"

# remote location (HTTP)
--output "http://example.com/created_item.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/created_item.json"

--outputFormat Format of created data.

# JSON (default)
--outputFormat json

# BSON
--outputFormat bson

# Message Pack
--outputFormat msgpack

# XML (removed in 2025.1.1)
--outputFormat xml

--outputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Input Data Schema

The data you input should follow this schema (recommended):

{
  "Collections": {
    "<Schema-Name>": [
      {
        // <Document>
      }
    ]
  }
}

This schema is also accepted:

Overview

84

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


{
  "<Schema-Name>": [
    {
      // <Document>
    }
  ]
}

A list of documents is accepted:

[
  {
    // <Document>
  }
]

And single document too:

{
  // <Document>
}

Output

Outputs the created document with all the edits that were made to make it conform to the schema.

{
  "Id": "Sword"

  /* rest of properties of created document */
}

Create Patch

Outputs the differences between two game datas as a file that can be used later to DATA APPLYPATCH to another
game data.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA CREATEPATCH --dataBase "c:\my app\gamedata.json" --input "c:\my app\gamedata_patch.json" --inputFormat json

# remote game data
dotnet charon DATA CREATEPATCH --dataBase "https://charon.live/view/data/My_Game/develop/" --input "./gamedata_patch.json" --inputFormat json --credentials "<API-Key>"

Parameters

--dataBase1 Absolute or relative path to a first game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase1 "c:\my app\gamedata.json"

# remote server
--dataBase1 "https://charon.live/view/data/My_Game/develop/"

Overview

85



--dataBase2 Absolute or relative path to a second game data. Use quotation marks if your
path contains spaces.

# local file
--dataBase2 "c:\my app\gamedata.json"

# remote server
--dataBase2 "https://charon.live/view/data/My_Game/develop/"

--output Path to a patch file. If the file exists, it will be overwritten. The directory
must already exist. Alternatively, you can output to Standard Error,
Standard Output, /dev/null, or a URL.

# standart output (default)
--output out
--output con

# standart error
--output err

# null device
--output null

# absolute path (windows)
--output "c:\my app\gamedata_patch.json"

# absolute path (unix)
--output /user/data/gamedata_patch.json

# relative path (universal)
--output "./gamedata_patch.json"

# remote location (HTTP)
--output "http://example.com/gamedata_patch.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/gamedata_patch.json"

--outputFormat Format of exported data.

# JSON (default)
--outputFormat json

# BSON
--outputFormat bson

# Message Pack
--outputFormat msgpack

# XML (removed in 2025.1.1)
--outputFormat xml

--outputFormattingOptions Additional options for specified format.

--credentials This parameter sets the API key used to access BOTH
remote servers. If this is not suitable, consider
downloading the data locally and running this command
on local files instead.

This command supports universal parameters.

Delete Document

Deletes a document. For a bulk deletion use DATA IMPORT command with --mode delete.

• CLI Installation

Overview

86

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA DELETE --dataBase "c:\my app\gamedata.json" --schema Item --id "Sword"

# remote game data
dotnet charon DATA DELETE --dataBase "https://charon.live/view/data/My_Game/develop/" --schema Item --id "Sword" --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--schema Name or identifier of the type (schema) of deleting
document.

# name
--schema Item

# id
--schema 55a4f32faca22e191098f3d9

--id Identifier of deleting document.

# text
--id Sword

# number
--id 101

Overview

87



--output The path to a file where the deleted document should be placed. If the file
exists, it will be overwritten. The directory must already exist. Alternatively,
you can output to Standard Error, Standard Output, /dev/null, or a URL.

# standart output
--output out
--output con

# standart error
--output err

# null device (default)
--output null

# absolute path (windows)
--output "c:\my app\deleted_item.json"

# absolute path (unix)
--output /user/data/deleted_item.json

# relative path (universal)
--output "./deleted_item.json"

# remote location (HTTP)
--output "http://example.com/deleted_item.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/deleted_item.json"

--outputFormat Format for deleted document.

# JSON (default)
--outputFormat json

# BSON
--outputFormat bson

# Message Pack
--outputFormat msgpack

# XML (removed in 2025.1.1)
--outputFormat xml

--outputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Output

Outputs the deleted document in its state at the time of deletion.

{
  "Id": "Sword"

  /* rest of properties of deleted document */
}

Export Data

Exports documents into a file.

• CLI Installation

• Commands Reference

• Universal Parameters

Overview

88

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA EXPORT --dataBase "c:\my app\gamedata.json" --schemas Character --output "c:\my app\characters.json" --outputFormat json

# remote game data
dotnet charon DATA EXPORT --dataBase "https://charon.live/view/data/My_Game/develop/" --schemas Character --output "./characters.json" --outputFormat json --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--schemas A list of types of documents (schemas) to export. By default all schemas
EXCEPT metadata are exported.

• Use space to separate multiple schemas.

• You can use wildcards (*) at the beginning and end of names.

• You can use identifiers in {} instead of names.

• You can exclude certain names by using an exclamation mark (!) at the
beginning of their names.

# schema name
--schemas Character
--schemas Character Item

# all (default)
--schemas *

# masks
--schemas Char*
--schemas *Modifier
--schemas *Mod*

# schema id
--schemas {18d4bf318f3c49688087dbed}

# negation
--schemas Char* !Character
--schemas !*Item*

# excluding system schemas (Schema, SchemaProperty, ProjectSettings)
--schemas ![system]

Overview

89



--properties A list of properties or property types to export. By
default all properties are exported.

• Id property always included

• Use space to separate multiple properties.

• You can use wildcards (*) at the beginning and
end of names.

• You can use identifiers in {} instead of names.

• You can exclude certain names by using an
exclamation mark (!) at the beginning of their
names.

• You can use data type in [] instead of names.
--languages List of languages to keep in exported data. Language’s

english name is used or language tag (BCP 47).

Use DATA I18N LANGUAGES to get list of used
languages.

• Use space to separate multiple languages

• You can use wildcards (*) at the beginning and
end of names.

• You can use LCID or CultureInfo.Name in {}
instead of the name.

• You can exclude certain names by using an
exclamation mark (!) at the beginning of their
names.

# language tag (BCP 47)
--languages {en-US}

# language name
--languages "Spanish (Spain)"

# language name mask
--languages Spanish*

# language LCID
--languages {3082}

# negation and masks
--languages !Spanish*
--languages Spanish* !{es-Es}

Overview

90

https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.englishname?view=netframework-4.8
https://msdn.microsoft.com/en-US/library/system.globalization.cultureinfo.name(v=vs.110).aspx
https://docs.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.name?view=netframework-4.8


--mode Export mode controls stripping and inclusion rules for
exported data.

# (default)
--mode normal

--mode publication
--mode extraction
--mode localization

normal

Export all specified documents defined in
–schemas. This mode ensures that the exported
graph of documents remains valid by including any
necessary additional documents to avoid any
broken references.

publication

Same as –mode normal, but all non-essential data
will be stripped. The result of the export can be
safely loaded within the game with the generated
code.

extraction

Export only the specified –schemas without
exporting any referenced documents. In this mode,
the exported graph of documents may contain
broken references. It is recommended to use the
import –mode safeupdate when importing this data
back.

localization

Same as –mode extraction but only
LocalizedText properties are exported.

--output Path to a exported data file. If the file exists, it will be overwritten. The
directory must already exist. Alternatively, you can output to Standard
Error, Standard Output, /dev/null, or a URL.

# standart output (default)
--output out
--output con

# standart error
--output err

# null device
--output null

# absolute path (windows)
--output "c:\my app\document.json"

# absolute path (unix)
--output /user/data/document.json

# relative path (universal)
--output "./document.json"

# remote location (HTTP)
--output "http://example.com/document.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/document.json"

Overview

91

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


--outputFormat Format of exported data.

# JSON (default)
--outputFormat json

# BSON
--outputFormat bson

# Message Pack
--outputFormat msgpack

# XML (removed in 2025.1.1)
--outputFormat xml

# XLSX Spreadsheet
--outputFormat xlsx

--outputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Output

The exported data follows the general game data structure, but omits ToolsVersion, RevisionHash, and
ChangeNumber when the export mode is not set to publication.

{
  "Collections":
  {
    "Character":
    [
      {
        "Id": "Knight"

        /* rest of properties of document */
      },
      {
        "Id": "Templar"

        /* rest of properties of document */
      },
      // ...
    ]
  }
}

Modifying Exported Data with yq

The exported data can be accessed or modified using the yq tool, a lightweight and portable command-line YAML,
JSON, and XML processor. yq uses jq-like syntax and supports common operations for manipulating structured data.

To use yq with exported JSON data:

1. Install `yq`: Follow the installation instructions from the official yq documentation:
https://mikefarah.gitbook.io/yq/.

2. Query Data: Use yq to query specific fields or values from the exported JSON file.

# Query a specific field
yq '.Collections.Character[0].name' characters.json

3. Modify Data: Use yq to update or add fields in the exported JSON file.

4. Convert Formats: yq can also convert between JSON, YAML, and other supported formats.

Overview

92

https://mikefarah.gitbook.io/yq/


# Convert JSON to YAML
yq -o=yaml characters.json > characters.yaml

For more advanced usage, refer to the yq documentation: https://mikefarah.gitbook.io/yq/.

Find Document

Seaches for a document.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA FIND --dataBase "c:\my app\gamedata.json" --schema Character --id John

# remote game data
dotnet charon DATA FIND --dataBase "https://charon.live/view/data/My_Game/develop/" --schema Character --id John --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--schema Name or identifier of the type (schema) of document.

# name
--schema Item

# id
--schema 55a4f32faca22e191098f3d9

--id Identifier of document.

# text
--id Sword

# number
--id 101

Overview

93

https://mikefarah.gitbook.io/yq/


--output Path to a found document file. If the file exists, it will be overwritten. The
directory must already exist. Alternatively, you can output to Standard
Error, Standard Output, /dev/null, or a URL.

# standart output (default)
--output out
--output con

# standart error
--output err

# null device
--output null

# absolute path (windows)
--output "c:\my app\document.json"

# absolute path (unix)
--output /user/data/document.json

# relative path (universal)
--output "./document.json"

# remote location (HTTP)
--output "http://example.com/document.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/document.json"

--outputFormat Format of exported data.

# JSON (default)
--outputFormat json

# BSON
--outputFormat bson

# Message Pack
--outputFormat msgpack

# XML (removed in 2025.1.1)
--outputFormat xml

--outputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Output

Outputs the found document.

{
  "Id": "John"

  /* rest of properties of found document */
}

Add Translation Languages

Add translation languages to specified game data.

• CLI Installation

• Universal Parameters

Overview

94

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


• Commands Reference

Command

# local game data (windows)
dotnet charon DATA I18N ADDLANGUAGE --dataBase "c:\my app\gamedata.json" --languages "es-ES" "en-GB"

# remote game data
dotnet charon DATA I18N ADDLANGUAGE --dataBase "https://charon.live/view/data/My_Game/develop/" --languages "es-ES" "en-GB" --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--languages The list of languages to add. Values are language tags
(BCP 47) separated by space..

This command supports universal parameters.

Export Translated Data

Export text that can be translated into a file.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA I18N EXPORT --dataBase "c:\my app\gamedata.json" --schemas Character --sourceLanguage en-US --targetLanguage fr --output "c:\my app\character_loc.xliff" --outputFormat xliff

# remote game data
dotnet charon DATA I18N EXPORT --dataBase "https://charon.live/view/data/My_Game/develop/" --schemas Character --sourceLanguage en-US --targetLanguage fr --output "./character_loc.xliff" --outputFormat xliff --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

Overview

95

https://msdn.microsoft.com/en-US/library/system.globalization.cultureinfo.name(v=vs.110).aspx
https://msdn.microsoft.com/en-US/library/system.globalization.cultureinfo.name(v=vs.110).aspx


--schemas A list of types of documents (schemas) to export. By default all schemas EXCEPT
metadata are exported.

• Use space to separate multiple schemas.

• You can use wildcards (*) at the beginning and end of names.

• You can use identifiers in {} instead of names.

• You can exclude certain names by using an exclamation mark (!) at the
beginning of their names.

# schema name
--schemas Character
--schemas Character Item

# all (default)
--schemas *

# masks
--schemas Char*
--schemas *Modifier
--schemas *Mod*

# schema id
--schemas {18d4bf318f3c49688087dbed}

# negation
--schemas Char* !Character
--schemas !*Item*

# excluding system schemas (Schema, SchemaProperty, ProjectSettings)
--schemas ![system]

--sourceLanguage Source (original) language for translation. Value is
language tag (BCP 47).

Use DATA I18N LANGUAGES to get list of used
languages.

# it is used as <source> in XLIFF
--sourceLanguage en-US

--targetLanguage Target language for translation. Value is language tag
(BCP 47).

# it is used as <target> in XLIFF
--targetLanguage es-ES

Overview

96

https://msdn.microsoft.com/en-US/library/system.globalization.cultureinfo.name(v=vs.110).aspx
https://msdn.microsoft.com/en-US/library/system.globalization.cultureinfo.name(v=vs.110).aspx
https://msdn.microsoft.com/en-US/library/system.globalization.cultureinfo.name(v=vs.110).aspx


--output Path to a file to which data will be exported. If the file exists, it will be
overwritten. The directory must already exist. Alternatively, you can
output to Standard Error, Standard Output, /dev/null, or a URL.

# standart output (default)
--output out
--output con

# standart error
--output err

# null device
--output null

# absolute path (windows)
--output "c:\my app\input.json"

# absolute path (unix)
--output /user/data/input.json

# relative path (universal)
--output "./input.json"

# remote location (HTTP)
--output "http://example.com/input.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/input.json"

--outputFormat Format of exported data.

# XLIFF v2 (default)
--outputFormat xliff
--outputFormat xliff2

# XLIFF v1
--outputFormat xliff1

# XSLX Spreadsheet
--outputFormat xslx

# JSON
--outputFormat json

--outputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Output

The exported data follows the general game data structure, but omits ToolsVersion, RevisionHash, and
ChangeNumber fields.

Importing Translated Data

Import translated text from a specified file into game data.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Overview

97

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


Command

# local game data (windows)
dotnet charon DATA I18N IMPORT --dataBase "c:\my app\gamedata.json" --input "c:\my app\character_loc.xliff" --inputFormat xliff

# remote game data
dotnet charon DATA I18N IMPORT --dataBase "https://charon.live/view/data/My_Game/develop/" --input "./character_loc.xliff" --inputFormat xliff --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--schemas A list of types of documents (schemas) to import. By default all schemas
EXCEPT metadata are imported.

• Use space to separate multiple schemas.

• You can use wildcards (*) at the beginning and end of names.

• You can use identifiers in {} instead of names.

• You can exclude certain names by using an exclamation mark (!) at the
beginning of their names.

# schema name
--schemas Character
--schemas Character Item

# all (default)
--schemas *

# masks
--schemas Char*
--schemas *Modifier
--schemas *Mod*

# schema id
--schemas {18d4bf318f3c49688087dbed}

# negation
--schemas Char* !Character
--schemas !*Item*

# excluding system schemas (Schema, SchemaProperty, ProjectSettings)
--schemas ![system]

--languages The list of languages to import. Values are language
tags (BCP 47).

# Import specific language
--languages en-US es-ES

# Import all languages
--languages *

Overview

98

https://msdn.microsoft.com/en-US/library/system.globalization.cultureinfo.name(v=vs.110).aspx
https://msdn.microsoft.com/en-US/library/system.globalization.cultureinfo.name(v=vs.110).aspx


--input Path to a file with data to import. Alternatively, you can use Standart
Input or URL.

See input data structure requirements.

# standart input (default)
--input in
--input con

# absolute path (windows)
--input "c:\my app\input.json"

# absolute path (unix)
--input /user/data/input.json

# relative path (universal)
--input "./input.json"

# remote location (HTTP)
--input "http://example.com/input.json"

# remote location with authentication (FTP)
--input "ftp://user:password@example.com/input.json"

--inputFormat Format of imported data.

# Auto-detect by extension (default)
--inputFormat auto

# XLIFF v2
--inputFormat xliff
--inputFormat xliff2

# XLIFF v1
--inputFormat xliff1

# XSLX Spreadsheet
--inputFormat xslx

--inputFormattingOptions Additional options for specified format.

Overview

99

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)
https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)


--output Optional path to a import report file. If the file exists, it will be overwritten.
The directory must already exist. Alternatively, you can output to Standard
Error, Standard Output, /dev/null, or a URL.

# standart output
--output out
--output con

# standart error
--output err

# null device (default)
--output null

# absolute path (windows)
--output "c:\my app\document.json"

# absolute path (unix)
--output /user/data/document.json

# relative path (universal)
--output "./document.json"

# remote location (HTTP)
--output "http://example.com/document.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/document.json"

--outputFormat Format of import report.

# JSON (default)
--outputFormat json

# BSON
--outputFormat bson

# Message Pack
--outputFormat msgpack

# XLSX Spreadsheet
--outputFormat xlsx

--outputFormattingOptions Additional options for specified format.

--dryRun Allows you to run the command without actually making
any changes to the game data, providing a preview of
what would happen.

This command supports universal parameters.

List Translation Languages

Get a list of supported translation languages. Primary language always shows up first in the list.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Overview

100

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


Command

# local game data (windows)
dotnet charon DATA I18N LANGUAGES --dataBase "c:\my app\gamedata.json" --output out --outputFormat table

# remote game data
dotnet charon DATA I18N LANGUAGES --dataBase "https://charon.live/view/data/My_Game/develop/" --output out --outputFormat table --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--output Path to language list file. If the file exists, it will be overwritten. The
directory must already exist. Alternatively, you can output to
Standard Error, Standard Output, /dev/null, or a URL.

# standart output (default)
--output out
--output con

# standart error
--output err

# null device
--output null

# absolute path (windows)
--output "c:\my app\input.json"

# absolute path (unix)
--output /user/data/input.json

# relative path (universal)
--output "./input.json"

# remote location (HTTP)
--output "http://example.com/input.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/input.json"

Overview

101

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


--outputFormat Format of exported data.

# JSON (default)
--outputFormat json

#> [
#>   "en-US",
#>   "es-ES",
#> ]

# Space separated list
--outputFormat list

#> en-US es-ES

# New line (OS specific) separated list
--outputFormat table

#> en-US
    #> es-ES

--outputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Import Data

Imports documents from file to a game data.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA IMPORT --dataBase "c:\my app\gamedata.json" --schemas Character --input "c:\my app\characters.json" --inputFormat json --mode safeUpdate

# remote game data
dotnet charon DATA IMPORT --dataBase "https://charon.live/view/data/My_Game/develop/" --schemas Character --input "./characters.json" --inputFormat json --mode safeUpdate --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

Overview

102



--schemas A list of types of documents (schemas) to import. By default all schemas EXCEPT
metadata are imported.

• Use space to separate multiple schemas.

• You can use wildcards (*) at the beginning and end of names.

• You can use identifiers in {} instead of names.

• You can exclude certain names by using an exclamation mark (!) at the
beginning of their names.

# schema name
--schemas Character
--schemas Character Item

# all (default)
--schemas *

# masks
--schemas Char*
--schemas *Modifier
--schemas *Mod*

# schema id
--schemas {18d4bf318f3c49688087dbed}

# negation
--schemas Char* !Character
--schemas !*Item*

# excluding system schemas (Schema, SchemaProperty, ProjectSettings)
--schemas ![system]

--mode Import mode controls merge behavior during import.

# (default)
--mode createAndUpdate

--mode create
--mode update
--mode safeUpdate
--mode replace
--mode delete

createAndUpdate

creates new documents and updates existing ones

create

only creates new documents, existing documents
are kept unchanged

update

only updates existing documents, no new ones are
created

safeUpdate

same as update but without creating, moving and
erasing embedded documents

replace

replaces the entire collection with the imported
documents

delete

deletes documents found in the imported data

Overview

103



--input Path to a data file. Alternatively, you can use Standart Input or URL.

# standart input (default)
--input in
--input con

# absolute path (windows)
--input "c:\my app\characters.json"

# absolute path (unix)
--input "/user/data/characters.json"

# relative path (universal)
--input "./characters.json"

# remote location (HTTP)
--input "http://example.com/characters.json"

# remote location with authentication (FTP)
--input "ftp://user:password@example.com/characters.json"

--inputFormat Format of imported data.

# Auto-detect by extension (default)
--inputFormat auto

# JSON
--inputFormat json

# BSON
--inputFormat bson

# Message Pack
--inputFormat msgpack

# XML (removed in 2025.1.1)
--inputFormat xml

# XLSX Spreadsheet
--inputFormat xlsx

--inputFormattingOptions Additional options for specified format.

Overview

104

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)


--output Optional path to a import report file. If the file exists, it will be overwritten.
The directory must already exist. Alternatively, you can output to Standard
Error, Standard Output, /dev/null, or a URL.

# standart output
--output out
--output con

# standart error
--output err

# null device (default)
--output null

# absolute path (windows)
--output "c:\my app\document.json"

# absolute path (unix)
--output /user/data/document.json

# relative path (universal)
--output "./document.json"

# remote location (HTTP)
--output "http://example.com/document.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/document.json"

--outputFormat Format of import report.

# JSON (default)
--outputFormat json

# BSON
--outputFormat bson

# Message Pack
--outputFormat msgpack

# XLSX Spreadsheet
--outputFormat xlsx

--outputFormattingOptions Additional options for specified format.

--dryRun Allows you to run the command without actually making
any changes to the game data, providing a preview of
what would happen.

This command supports universal parameters.

Input Data Structure

The data you input should follow this structure (recommended):

{
  "Collections": {
    "<Schema-Name>": [
      {
        // <Document>
      }
    ]
  }
}

Overview

105

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


This structure is also accepted:

{
  "<Schema-Name>": [
    {
      // <Document>
    }
  ]
}

A list of documents is accepted if only one name in --schemas is specified:

[
  {
    // <Document>
  }
]

And single document is accepted too if only one name in --schemas is specified:

{
  // <Document>
}

List Documents

Seaches for a documents.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA LIST --dataBase "c:\my app\gamedata.json" --schema Character

# remote game data
dotnet charon DATA LIST --dataBase "https://charon.live/view/data/My_Game/develop/" --schema Character --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--schema Name or identifier of the type (schema) of document.

# name
--schema Item

# id
--schema 55a4f32faca22e191098f3d9

Overview

106



--filters Document filter expressions.

# patterns
--filters <Field> <Operator> <Value> [<Field> <Operator> <Value>...]

# single expression
--filters Id > 10
--filters Name like "Zombie"

# multiple expressions
--filters Id > 10 Name like "Zombie"

# greater than
--filters Id > 0
--filters Id greaterThan 0

# greater than or equal
--filters Id >= 0
--filters Id greaterThanOrEqual 0

# less than
--filters Id < 0
--filters Id lessThan 0

# less than or equal
--filters Id <= 0
--filters Id LessThanOrEqual 0

# equal
--filters Id = 0
--filters Id == 0
--filters Id equal 0

# not equal
--filters Id <> 0
--filters Id != 0
--filters Id notEqual 0

# like - is used to search for specific patterns in a field, allowing for partial matches.
--filters Name like "Zombie"

--sorters Document sort expressions.

# patterns
--sorters <Field> ASC|DESC [<Field> ASC|DESC ...]

# ascending
--sorters Name ASC

# descending
--sorters Name DESC

Overview

107



--path Embeddance path filter. Could be used to get only
embedded documents.

# any path
--path *

# root documents (default)
--path ""

# in 'Item' property
--path /Item

--skip Number of found documents to skip.

# skip first ten documents after applying --filter and --sort
--skip 10

--take Max amount to documents return.

# limit to first 100 documents after --skip
--take 100

--output Path to a found document file. If the file exists, it will be overwritten.
The directory must already exist. Alternatively, you can output to
Standard Error, Standard Output, /dev/null, or a URL.

# standart output (default)
--output out
--output con

# standart error
--output err

# null device
--output null

# absolute path (windows)
--output "c:\my app\document.json"

# absolute path (unix)
--output /user/data/document.json

# relative path (universal)
--output "./document.json"

# remote location (HTTP)
--output "http://example.com/document.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/document.json"

--outputFormat Format of exported data.

# JSON (default)
--outputFormat json

# BSON
--outputFormat bson

# Message Pack
--outputFormat msgpack

# XML (removed in 2025.1.1)
--outputFormat xml

--outputFormattingOptions Additional options for specified format.

Overview

108

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


This command supports universal parameters.

Output

The exported data follows the general game data structure, but omits ToolsVersion, RevisionHash, and
ChangeNumber.

{
  "Collections":
  {
    "Character":
    [
      {
        "Id": "Knight"

        /* rest of properties of document */
      },
      {
        "Id": "Templar"

        /* rest of properties of document */
      },
      // ...
    ]
  }
}

Restore from Backup

Restores game data from a file created by DATA BACKUP command.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA RESTORE --dataBase "c:\my app\gamedata.json" --input "c:\my app\backup.msgpkg" --inputFormat msgpack

# remote game data
dotnet charon DATA RESTORE --dataBase "https://charon.live/view/data/My_Game/develop/" --input "./backup.msgpkg" --inputFormat msgpack --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

Overview

109



--input Path to a backup file. Alternatively, you can use Standart Input or URL.

# standart input (default)
--input in
--input con

# absolute path (windows)
--input "c:\my app\backup.json"

# absolute path (unix)
--input "/user/data/backup.json"

# relative path (universal)
--input "./backup.json"

# remote location (HTTP)
--input "http://example.com/backup.json"

# remote location with authentication (FTP)
--input "ftp://user:password@example.com/backup.json"

--inputFormat Format of imported data.

# Auto-detect by extension (default)
--inputFormat auto

# JSON
--inputFormat json

# Message Pack
--inputFormat msgpack

--inputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Update Document

Updates a document. For a bulk updates use DATA IMPORT command with --mode update.
The update document in --input may be partial, with non-included fields being omitted.
Only the first document from the --input will be processed.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon DATA UPDATE --dataBase "c:\my app\gamedata.json" --schema Item --input "c:\my app\item.json" --inputFormat json

# remote game data
dotnet charon DATA UPDATE --dataBase "https://charon.live/view/data/My_Game/develop/" --schema Item --input "./item.json" --inputFormat json --credentials "<API-Key>"

Overview

110

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)


Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--schema Name or identifier of the type (schema) of updated
document.

# name
--schema Item

# id
--schema 55a4f32faca22e191098f3d9

--id Identifier of updated document. Could be omitted if Id is
specified in --input document.

# text
--id Sword

# number
--id 101

--input Path to a file with update data. Alternatively, you can use
Standart Input or URL.

# standart input (default)
--input in
--input con

# absolute path (windows)
--input "c:\my app\item.json"

# absolute path (unix)
--input "/user/data/item.json"

# relative path (universal)
--input "./item.json"

# remote location (HTTP)
--input "http://example.com/item.json"

# remote location with authentication (FTP)
--input "ftp://user:password@example.com/item.json"

Overview

111

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)


--inputFormat Format of update data.

# Auto-detect by extension (default)
--inputFormat auto

# JSON
--inputFormat json

# BSON
--inputFormat bson

# Message Pack
--inputFormat msgpack

# XML (removed in 2025.1.1)
--inputFormat xml

--inputFormattingOptions Additional options for specified format.

--output Path to a updated document file. If the file exists, it will be overwritten.
The directory must already exist. Alternatively, you can output to
Standard Error, Standard Output, /dev/null, or a URL.

# standart output
--output out
--output con

# standart error
--output err

# null device (default)
--output null

# absolute path (windows)
--output "c:\my app\updated_item.json"

# absolute path (unix)
--output /user/data/updated_item.json

# relative path (universal)
--output "./updated_item.json"

# remote location (HTTP)
--output "http://example.com/updated_item.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/updated_item.json"

--outputFormat Format of updated data.

# JSON (default)
--outputFormat json

# BSON
--outputFormat bson

# Message Pack
--outputFormat msgpack

# XML (removed in 2025.1.1)
--outputFormat xml

--outputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Overview

112

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


Input Data Schema

The data you input should follow this schema (recommended):

{
  "Collections": {
    "<Schema-Name>": [
      {
        // <Document>
      }
    ]
  }
}

This schema is also accepted:

{
  "<Schema-Name>": [
    {
      // <Document>
    }
  ]
}

A list of documents is accepted:

[
  {
    // <Document>
  }
]

And single document too:

{
  // <Document>
}

Output

Outputs the updated document with all the edits that were made to make it conform to the schema.

{
  "Id": "Sword"

  /* rest of properties of updated document */
}

Validate Game Data

Checks the game data for validity and produces a report.

The exit code will be 1 if the report contains errors and the --output is set to err. Otherwise, the exit code will be
0.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Overview

113



Command

# local game data (windows)
dotnet charon DATA DELETE --dataBase "c:\my app\gamedata.json" --schema Item --id "Sword"

# remote game data
dotnet charon DATA DELETE --dataBase "https://charon.live/view/data/My_Game/develop/" --schema Item --id "Sword" --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--validationOptions List of validation checks and repairs to perform.

# repairs
--validationOptions repair
--validationOptions deduplicateIds
--validationOptions repairRequiredWithDefaultValue
--validationOptions eraseInvalidValue

# checks (default)
--validationOptions checkTranslation
--validationOptions checkRequirements
--validationOptions checkFormat
--validationOptions checkUniqueness
--validationOptions checkReferences
--validationOptions checkSpecification
--validationOptions checkConstraints

Overview

114



--output Path to a validation report file. If the file exists, it will be overwritten. The
directory must already exist. Alternatively, you can output to Standard
Error, Standard Output, /dev/null, or a URL.

# standart output
--output out
--output con

# standart error
--output err

# null device (default)
--output null

# absolute path (windows)
--output "c:\my app\document.json"

# absolute path (unix)
--output /user/data/document.json

# relative path (universal)
--output "./document.json"

# remote location (HTTP)
--output "http://example.com/document.json"

# remote location with authentication (FTP)
--output "ftp://user:password@example.com/document.json"

--outputFormat Format of exported data.

# JSON (default)
--outputFormat json

# BSON
--outputFormat bson

# Message Pack
--outputFormat msgpack

# XML (removed in 2025.1.1)
--outputFormat xml

--outputFormattingOptions Additional options for specified format.

This command supports universal parameters.

Output Data Schema

The report follow this pattern:

{
  records:
  [
    {
      id: "<document-id>",
      schemaId: "<schema-id>",
      schemaName: "<schema-name>",
      errors: // could be null if no errors
      [
        {
          path: "<path-in-document>",
          message: "<error-message>",

Overview

115

https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_error_(stderr)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Null_device


          code: "<error-code>"
        },
        // ...
      ]
    },
    // ...
  ]
}

or JSON schema:

{
  "type": "object",
  "x-name": "ValidationReport",
  "additionalProperties": false,
  "properties": {
    "records": {
      "type": "array",
      "items": {
        "type": "object",
        "x-name": "ValidationRecord",
        "additionalProperties": false,
        "properties": {
          "id": { },
          "schemaName": {
            "type": "string"
          },
          "schemaId": {
            "type": "string"
          },
          "errors": {
            "type": "array",
            "items": {
              "type": "object",
              "x-name": "ValidationError",
              "additionalProperties": true,
              "readOnly": true,
              "properties": {
                "path": {
                  "type": "string"
                },
                "message": {
                  "type": "string"
                },
                "code": {
                  "type": "string"
                }
              }
            }
          }
        }
      }
    },
    "metadataHashCode": {
      "type": "integer",
      "format": "int32"
    }
  }
}

Overview

116

https://json-schema.org/


Generate C# Source Code

Generates C# source code for game data into output directory.

This command does not delete previously generated files, and it is the responsibility of the user to ensure that any
previous files are removed before running the command again.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon GENERATE CSHARPCODE --dataBase "c:\my app\gamedata.json" --namespace "MyGame.Parameters" --outputDirectory "c:\my app\scripts"

# remote game data
dotnet charon GENERATE CSHARPCODE --dataBase "https://charon.live/view/data/My_Game/develop/" --namespace "MyGame.Parameters" --outputDirectory "./scripts" --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--outputDirectory Specifies the path where the source code should be
written. It can be either an absolute or relative path to a
directory. The specified directory must already be
present.

# Windows
--outputDirectory "c:\my app\scripts"

# Linux or OSX
--outputDirectory "~/my app/scripts"

# Relative path
--outputDirectory "./my app/scripts"

--languageVersion Target C# version. By default it is 4.0.

--languageVersion CSharp40
--languageVersion CSharp73

--documentClassName Name for base class for all documents.

# name (default)
--documentClassName Document

# in case of name collision
--documentClassName GameDataDocument

Overview

117



--gameDataClassName Name for class containing whole in-memory game
data.

# name (default)
--gameDataClassName GameData

# in case of name collision
--gameDataClassName MyGameData

--namespace Namespace for all generated classes.

# name (default)
--namespace GameParameters

--defineConstantsPreprocessor constants to define. Use semicolon(;) to separate multiple values.

# Use GameDevWare.Dynamic.Expressions.dll for formulas
--defineConstants USE_DYNAMIC_EXPRESSIONS

# Exclude all formula related code from compilation
--defineConstants SUPPRESS_BUILD_IN_FORMULAS

# Enable some JSON formatting optimizations using System.Memory.dll and System.Buffers.Text namespace.
--defineConstants BUFFERS_TEXT_DLL

--indentation Indentation style for generated code.

# Tabs (default)
--indentation Tabs

# Two spaces
--indentation TwoSpaces

# Four spaces
--indentation FourSpaces

--lineEndings Line ending symbols for generated code.

# Windows \\r\\n (default)
--lineEndings Windows

# Unix style \\n
--lineEndings Unix

--splitFiles Set this flag to lay out generated classes into separate
files. If not set, then one giant file with the name of
--gameDataClassName.cs will be generated.

Overview

118



--optimizationsList of enabled optimization in generated code.

# Eagerly resolves and validates all references in loaded documents.
# When enabled, this optimization ensures that all references in documents are resolved and validated
# during loading. This comes with a performance cost but guarantees the validity of references.
--optimizations eagerReferenceResolution

# Opts for raw references without generating helper methods for referenced documents.
# With this optimization, the generated code will not include helper methods for accessing
# referenced documents, keeping only accessors that work with raw references.
--optimizations rawReferences

# Avoids generating helper methods for localized strings, keeping only raw accessors.
# This optimization eliminates helper methods for accessing localized text, instead providing
# accessors that deal directly with lists of localized texts.
--optimizations rawLocalizedStrings

# Disables string pooling during game data loading.
# Turning off string pooling can yield a minor performance improvement at the cost of increased
# memory usage, as it avoids reusing short strings.
--optimizations disableStringPooling

# Disables generation of code for loading game data from JSON formatted files.
# This optimization omits code related to JSON serialization, useful when JSON formatted
# game data is not used.
--optimizations disableJsonSerialization

# Disables generation of code for loading game data from Message Pack formatted files.
# Similar to DisableJsonSerialization, this option removes code related to loading data
# from Message Pack formatted files.
--optimizations disableMessagePackSerialization

# Disables generation of code related to applying patches during game data loading.
# This removes a significant portion of code that is mainly used for modding support,
# where patches are applied to game data at runtime.
--optimizations disablePatching

# Disables generation of enums with known document IDs.
# This removes a significant portion of code that contains listings of IDs for
# documents known at the moment of code generation, which improves compilation time.
--optimizations disableDocumentIdEnums

--clearOutputDirectory Clear the output directory from generated files.
Generated files are identified by the presence of the
‘<auto-generated>’ tag inside.

This command supports universal parameters.

Generate Haxe Source Code

Generates Haxe source code for game data into output directory.

This command does not delete previously generated files, and it is the responsibility of the user to ensure that any
previous files are removed before running the command again.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Overview

119



Command

# local game data (windows)
dotnet charon GENERATE HAXE --dataBase "c:\my app\gamedata.json" --packageName "" --outputDirectory "c:\my app\scripts"

# remote game data
dotnet charon GENERATE HAXE --dataBase "https://charon.live/view/data/My_Game/develop/" --packageName "" --outputDirectory "./scripts" --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--outputDirectory Specifies the path where the source code should be
written. It can be either an absolute or relative path to a
directory. The specified directory must already be
present.

# Windows
--outputDirectory "c:\my app\scripts"

# Linux or OSX
--outputDirectory "~/my app/scripts"

# Relative path
--outputDirectory "./my app/scripts"

--documentClassName Name for base class for all documents.

# name (default)
--documentClassName Document

# in case of name collision
--documentClassName GameDataDocument

--gameDataClassName Name for class containing whole in-memory game
data.

# name (default)
--gameDataClassName GameData

# in case of name collision
--gameDataClassName MyGameData

--packageName Package name for all generated classes.

# empty package (default)
--packageName ""

# named
--packageName GameParameters

Overview

120



--indentation Indentation style for generated code.

# Tabs (default)
--indentation Tabs

# Two spaces
--indentation TwoSpaces

# Four spaces
--indentation FourSpaces

--lineEndings Line ending symbols for generated code.

# Windows \\r\\n (default)
--lineEndings Windows

# Unix style \\n
--lineEndings Unix

--splitFiles Set this flag to lay out generated classes into separate
files. If not set, then one giant file with the name of
--gameDataClassName.hx will be generated.

--optimizations List of enabled optimization in generated code.

# Eagerly resolves and validates all references in loaded documents.
# When enabled, this optimization ensures that all references in documents are resolved and validated
# during loading. This comes with a performance cost but guarantees the validity of references.
--optimizations eagerReferenceResolution

# Opts for raw references without generating helper methods for referenced documents.
# With this optimization, the generated code will not include helper methods for accessing
# referenced documents, keeping only accessors that work with raw references.
--optimizations rawReferences

# Avoids generating helper methods for localized strings, keeping only raw accessors.
# This optimization eliminates helper methods for accessing localized text, instead providing
# accessors that deal directly with lists of localized texts.
--optimizations rawLocalizedStrings

# Disables string pooling during game data loading.
# Turning off string pooling can yield a minor performance improvement at the cost of increased
# memory usage, as it avoids reusing short strings.
--optimizations disableStringPooling

# Disables generation of code for loading game data from JSON formatted files.
# This optimization omits code related to JSON serialization, useful when JSON formatted
# game data is not used.
--optimizations disableJsonSerialization

# Disables generation of code for loading game data from Message Pack formatted files.
# Similar to DisableJsonSerialization, this option removes code related to loading data
# from Message Pack formatted files.
--optimizations disableMessagePackSerialization

# Disables generation of code related to applying patches during game data loading.
# This removes a significant portion of code that is mainly used for modding support,
# where patches are applied to game data at runtime.
--optimizations disablePatching

# Disables generation of enums with known document IDs.
# This removes a significant portion of code that contains listings of IDs for
# documents known at the moment of code generation, which improves compilation time.
--optimizations disableDocumentIdEnums

Overview

121



--clearOutputDirectory Clear the output directory from generated files.
Generated files are identified by the presence of the
‘<auto-generated>’ tag inside.

This command supports universal parameters.

Export Code Generation Templates

Exports T4 code generation templates to a specified directory. These templates can be used with Visual Studio,
Rider, Visual Studio Code with plugin, dotnet tool or other tools to generate source code.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# Windows
dotnet charon GENERATE TEMPLATES --outputDirectory "c:\templates"

Parameters

--outputDirectory Specifies the path where the templates should be
written. It can be either an absolute or relative path to a
directory. The specified directory must already be
present.

# Windows
--outputDirectory "c:\templates"

# Linux or OSX
--outputDirectory "~/templates"

# Relative path
--outputDirectory "./templates"

Generate Text from Templates (Obsolete)

Generates text from T4 templates into output directory.

Warning

This command was removed since 2025.1.1 version. It is recommended to use an IDE or open-source
alternatives for generating text with T4 templates. See: dotnet-t4

See GENERATE TEMPLATES to get actual T4 templates.

• CLI Installation

• Commands Reference

Generate TypeScript Source Code

Generates TypeScript source code for game data into output directory.

This command does not delete previously generated files, and it is the responsibility of the user to ensure that any
previous files are removed before running the command again.

• CLI Installation

Overview

122

https://learn.microsoft.com/en-us/visualstudio/modeling/code-generation-and-t4-text-templates
https://www.nuget.org/packages/dotnet-t4
https://github.com/mono/t4


• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon GENERATE TYPESCRIPTCODE --dataBase "c:\my app\gamedata.json" --outputDirectory "c:\my app\scripts"

# remote game data
dotnet charon GENERATE TYPESCRIPTCODE --dataBase "https://charon.live/view/data/My_Game/develop/" --outputDirectory "./scripts" --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--outputDirectory Specifies the path where the source code should be
written. It can be either an absolute or relative path to a
directory. The specified directory must already be
present.

# Windows
--outputDirectory "c:\my app\scripts"

# Linux or OSX
--outputDirectory "~/my app/scripts"

# Relative path
--outputDirectory "./my app/scripts"

--documentClassName Name for base class for all documents.

# name (default)
--documentClassName Document

# in case of name collision
--documentClassName GameDataDocument

--gameDataClassName Name for class containing whole in-memory game
data.

# name (default)
--gameDataClassName GameData

# in case of name collision
--gameDataClassName MyGameData

Overview

123



--indentation Indentation style for generated code.

# Tabs (default)
--indentation Tabs

# Two spaces
--indentation TwoSpaces

# Four spaces
--indentation FourSpaces

--lineEndings Line ending symbols for generated code.

# Windows \\r\\n (default)
--lineEndings Windows

# Unix style \\n
--lineEndings Unix

--splitFiles Set this flag to lay out generated classes into separate
files. If not set, then one giant file with the name of
--gameDataClassName.ts will be generated.

--optimizations List of enabled optimization in generated code.

# Eagerly resolves and validates all references in loaded documents.
# When enabled, this optimization ensures that all references in documents are resolved and validated
# during loading. This comes with a performance cost but guarantees the validity of references.
--optimizations eagerReferenceResolution

# Opts for raw references without generating helper methods for referenced documents.
# With this optimization, the generated code will not include helper methods for accessing
# referenced documents, keeping only accessors that work with raw references.
--optimizations rawReferences

# Avoids generating helper methods for localized strings, keeping only raw accessors.
# This optimization eliminates helper methods for accessing localized text, instead providing
# accessors that deal directly with lists of localized texts.
--optimizations rawLocalizedStrings

# Disables string pooling during game data loading.
# Turning off string pooling can yield a minor performance improvement at the cost of increased
# memory usage, as it avoids reusing short strings.
--optimizations disableStringPooling

# Disables generation of code for loading game data from JSON formatted files.
# This optimization omits code related to JSON serialization, useful when JSON formatted
# game data is not used.
--optimizations disableJsonSerialization

# Disables generation of code for loading game data from Message Pack formatted files.
# Similar to DisableJsonSerialization, this option removes code related to loading data
# from Message Pack formatted files.
--optimizations disableMessagePackSerialization

# Disables generation of code related to applying patches during game data loading.
# This removes a significant portion of code that is mainly used for modding support,
# where patches are applied to game data at runtime.
--optimizations disablePatching

# Disables generation of enums with known document IDs.
# This removes a significant portion of code that contains listings of IDs for
# documents known at the moment of code generation, which improves compilation time.
--optimizations disableDocumentIdEnums

Overview

124



--clearOutputDirectory Clear the output directory from generated files.
Generated files are identified by the presence of the
‘<auto-generated>’ tag inside.

This command supports universal parameters.

Generate Unreal Engine C++ Source Code

Generates C++ for Unreal Engine source code for game data into output directory.

This command does not delete previously generated files, and it is the responsibility of the user to ensure that any
previous files are removed before running the command again.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon GENERATE UECPPCODE --dataBase "c:\My Project\Content\gamedata.json" --outputDirectory "c:\My Project\Source\Gamedata"

# remote game data
dotnet charon GENERATE UECPPCODE --dataBase "https://charon.live/view/data/My_Game/develop/" --outputDirectory "./My Project/Source/Gamedata" --credentials "<API-Key>"

Parameters

--dataBase Absolute or relative path to game data. Use quotation marks if your path
contains spaces.

# local file
--dataBase "c:\My Project\Content\gamedata.json"

# remote server
--dataBase "https://charon.live/view/data/My_Game/develop/"

--credentials The API key used to access remote server in case of
–dataBase being URL.

--outputDirectory Specifies the path where the source code should be written. It
can be either an absolute or relative path to a directory. The
specified directory must already be present.

# Windows
--outputDirectory "c:\My Project\Source\Gamedata"

# Linux or OSX
--outputDirectory "~/My Project/Source/Gamedata"

# Relative path
--outputDirectory "./My Project/Source/Gamedata"

--documentClassName Name for base class for all documents.

# name (default)
--documentClassName Document # became UDocument in generated code

# in case of custom inheritance chain
    # class SHOULD publicly inherit UDocument
--documentClassName GameDataDocument # became UGameDataDocument in generated code

Overview

125



--gameDataClassName Name for class containing whole in-memory game data.

# name (default)
--gameDataClassName GameData # became UGameData in generated code

# in case of name collision
--gameDataClassName MyGameData # became UMyGameData in generated code

--defineConstants Preprocessor constants to define. Use semicolon(;) to separate
multiple values.

--defineConstants NO_OPTIMIZATIONS;USE_FSTRING_ONLY

--indentation Indentation style for generated code.

# Tabs (default)
--indentation Tabs

# Two spaces
--indentation TwoSpaces

# Four spaces
--indentation FourSpaces

--lineEndings Line ending symbols for generated code.

# Windows \\r\\n (default)
--lineEndings Windows

# Unix style \\n
--lineEndings Unix

Overview

126



--optimizationsList of enabled optimization in generated code.

# Eagerly resolves and validates all references in loaded documents.
# When enabled, this optimization ensures that all references in documents are resolved and validated
# during loading. This comes with a performance cost but guarantees the validity of references.
--optimizations eagerReferenceResolution

# Opts for raw references without generating helper methods for referenced documents.
# With this optimization, the generated code will not include helper methods for accessing
# referenced documents, keeping only accessors that work with raw references.
--optimizations rawReferences

# Avoids generating helper methods for localized strings, keeping only raw accessors.
# This optimization eliminates helper methods for accessing localized text, instead providing
# accessors that deal directly with lists of localized texts.
--optimizations rawLocalizedStrings

# Disables string pooling during game data loading.
# Turning off string pooling can yield a minor performance improvement at the cost of increased
# memory usage, as it avoids reusing short strings.
--optimizations disableStringPooling

# Disables generation of code for loading game data from JSON formatted files.
# This optimization omits code related to JSON serialization, useful when JSON formatted
# game data is not used.
--optimizations disableJsonSerialization

# Disables generation of code for loading game data from Message Pack formatted files.
# Similar to DisableJsonSerialization, this option removes code related to loading data
# from Message Pack formatted files.
--optimizations disableMessagePackSerialization

# Disables generation of code related to applying patches during game data loading.
# This removes a significant portion of code that is mainly used for modding support,
# where patches are applied to game data at runtime.
--optimizations disablePatching

# Disables generation of enums with known document IDs.
# This removes a significant portion of code that contains listings of IDs for
# documents known at the moment of code generation, which improves compilation time.
--optimizations disableDocumentIdEnums

--clearOutputDirectory Clear the output directory from generated files.
Generated files are identified by the presence of the
‘<auto-generated>’ tag inside.

This command supports universal parameters.

Initialize Game Data

Initializes an empty or missing file with initial data. Path to game data should be local file system’s file.

• CLI Installation

• Commands Reference

Overview

127



Command

# full path (windows)
dotnet charon INIT "c:\my app\gamedata.gdjs"

# full path (linux)
dotnet charon INIT "/var/mygame/gamedata.json"

# relative path
dotnet charon INIT mygame/gamedata.json

Parameters

--fileName Absolute or relative path to game data file. Use
quotation marks if your path contains spaces.

# local file
--fileName "c:\my app\gamedata.json"

URL input/output parameters

Some command accept URL as input/output parameter.

Supported URL Schemes

Scheme Input parameter Output parameter

HTTP[S] A GET request will be sent A POST request with body containing output will be sent

FTP(S) A RETR command will be sent A STOR command with output content will be sent

FILE File will be read File will be written

Authentication

Authentication data could be passed in user part of URL. More advanced authentication schemes are not supported.

Overview

128

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier


Examples

# publish data to FTP
dotnet charon DATA EXPORT
  --dataBase "https://charon.live/view/data/My_Game/develop/dashboard"
  --output "ftp://user:password@example.com/public/gamedata.json"
  --mode publication
  --outputFormat json
  --credentials "<API-Key>"

# import localization from remote HTTP server
dotnet charon DATA I18N IMPORT
  --dataBase "file:///c:/my app/gamedata.json"
  --input "https://example.com/translated/gamedata.xliff"
  --inputFormat xliff

# print languages for game data in local file
dotnet charon DATA I18N LANGUAGES --dataBase "file:///c:/my app/gamedata.json"

# print languages for game data in local file relative to current working directory
dotnet charon DATA I18N LANGUAGES --dataBase "file:///./gamedata.json"

# print languages for game data at remote server using API Key
export CHARON_API_KEY=87758CC0D7C745D0948F2A8AFE61BC81
dotnet charon DATA I18N LANGUAGES --dataBase "https://charon.live/view/data/My_Game/develop/dashboard"

Start in Standalone Mode

Starts Charon in standalone mode for specified game data. Path to game data could be local file system’s file or
remote server address.

• CLI Installation

• Commands Reference

• Universal Parameters

• URL-based Input/Output

Command

# local game data (windows)
dotnet charon SERVER START --dataBase "c:\my app\gamedata.json" --port 8080 --launchDefaultBrowser

# shortcut version
dotnet charon "c:\my app\gamedata.json"

Parameters

--dataBase Absolute or relative path to game data. Use quotation
marks if your path contains spaces.

# local file
--dataBase "c:\my app\gamedata.json"

--port Number of an IP port (1-65535) to be used to listen for
browser based UI.

--launchDefaultBrowser Set this flag to open system-default browser on
successful start.

--resetPreferences Set this flag to reset UI preferences on successful start.

This command supports universal parameters.

Overview

129

https://en.wikipedia.org/wiki/Port_(computer_networking)


Universal parameters

All commands accept universal parameters and environment variables.
--verbose Set this flag to get additional diagnostic information in

logs.

--log <path> Add additional file logging to the existing logging
configuration from appsettings.json.

--log "./logs/charon.log"

--log out Add additional terminal (standard output) logging to the
existing logging configuration from
appsettings.json.

--log out
# or
--log con

--pause Wait for user prompt before the application exits.

Environment variables

In addition to the standard configuration redefinition mechanism using environment variables, the following
environment variables are also supported.

CHARON_API_KEY

The API key which is used to access the remote server. This environment variable is usually used in
conjunction with --dataBase, which points to a remote server.

# Windows
set CHARON_API_KEY=87758CC0D7C745D0948F2A8AFE61BC81

# OSX or Linux
export CHARON_API_KEY=87758CC0D7C745D0948F2A8AFE61BC81

Get Charon Version

Gets version of dotnet charon application.

• CLI Installation

• Commands Reference

Command

# Windows, Linux or OSX
dotnet charon VERSION
#> 2023.2.3-alpha

Parameters

This command supports universal parameters.

Overview

130

https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/configuration/?view=aspnetcore-7.0#non-prefixed-environment-variables


Game Data Structure

Game Data

Fields

• ToolsVersion (string): Version of the application used to create this file.

• RevisionHash (string): Current changeset hash value.

• ChangeNumber (number): Current changeset ordinal number.

• Collections (object): List of document collections identified by schema name.

• ProjectSettings (array): Project-related settings for the current file.

• See Project Settings section below.

• Schema (array): Project-related schemas for the current file.

• See Schema section below.

• <Schema-Name> (array): Other document collections listed in alphabetical order.
Example

{
  "ToolsVersion": "2023.1.2.0",
  "RevisionHash": "678f998993a22d1f54b7fa80",
  "ChangeNumber": 1,
  "Collections":
  {
    "ProjectSettings":
    [
      {
        /* see project settings section below */
      }
    ],
    "Schema":
    [
      {
        /* see schema section below */
      }
    ],
    "SchemaProperty": [ /* always empty */ ],

Overview

131



    "<Schema-Name>":
    [
      {
        "Id": "<Id>" // All documents have Id

        /* rest of properties of document */
      },
      // ...
    ]
  }
}

Project Settings

Fields

• Id (string): Unique identifier for the project settings (BSON ObjectId).

• Name (string): Name of the project.

• PrimaryLanguage (string): Primary language for localizable text in the project (language ID in BCP-47
format).

• Languages (string): Alternative languages for localizable text in the project (semicolon-delimited list of
language IDs in BCP-47 format).

• Copyright (string): Copyright information for the project.

• Version (string): Version of the current file, represented as four numbers separated by dots
(Major.Minor.Build.Revision).

Example

{
  "Id": "049bc0604c363a980b000088",
  "Name": "My Project",
  "PrimaryLanguage": "en-US",
  "Languages": "en-GB;fr-FR",
  "Copyright": "My Company (■) 2025",
  "Version": "1.0.0.0"
}

Schema

Fields

• Id (string): Unique identifier for the schema (BSON ObjectId).

• Name (string): Name of the schema (valid C identifier).

• DisplayName (string): Display name of the schema for UI purposes.

• Description (string): Schema description used in generated documentation.

• Specification (string): Extension data for the schema in application/x-www-form-urlencoded format
(RFC-1867).

• IdGenerator (number): ID generation method for documents created by this schema:

• 0 : None - ID must be provided manually by the user.

• 1 : ObjectId - Generates a new BSON ObjectId.

• 2 : Guid - Generates a new UUID.

• 3 : Sequence - Uses an incrementing number unique to each schema.

• 4 : GlobalSequence - Uses an incrementing number shared across all schemas.

Overview

132



• Type (number): Schema type:

• 0 : Normal - Documents can be created in Collections or embedded in another document.

• 1 : Component - Documents are always embedded in another document and never appear in
Collections.

• 2 : Settings - Only one document of this schema can exist in Collections.

• Properties (array): List of schema properties. Always includes the Id property.

• See Schema Property section below.
Example

{
  "Id": "592fc86c983a36266c0912a0",
  "Name": "Item",
  "DisplayName": "Items",
  "Type": 0,
  "Description": "An item.",
  "IdGenerator": 1,
  "Specification": "icon=fugue16%2Fabacus&group=Metagame",
  "Properties": [
    // property
  ]
}

Schema Property

Structure

• Id (string): Unique identifier for the property (BSON ObjectId).

• Name (string): Name of the property (valid C identifier).

• DisplayName (string): Display name for UI and documentation purposes.

• Description (string): Property description used in generated documentation.

• DataType (number): Data type of values stored in documents:

• 0: Text - Line of text.

• 1: LocalizedText - Lines of localized text.

• 5: Logical - Boolean value.

• 8: Time - Time span.

• 9: Date - Specific date.

• 12 : Number - Decimal number.

• 13 : Integer - Whole number.

• 18 : PickList - Predefined value list.

• 19 : MultiPickList - Multiple selections from predefined values.

• 22 : Document - Embedded document.

• 23 : DocumentCollection - Collection of embedded documents.

• 28 : Reference - Reference to another document.

• 29 : ReferenceCollection - References to multiple documents.

• 35 : Formula - C#-like expression for calculations.

• DefaultValue (vary|null): Default value for the property used when a new document is created.

Overview

133



• Uniqueness (number): Uniqueness requirement for the property:

• 0 : None - Value does not need to be unique.

• 1 : Unique - Value must be unique across all documents of this type.

• 2 : UniqueInCollection - Value must be unique within the containing collection.

• Requirement (number): Value requirement for the property:

• 0 : None - Value is optional and can be null.

• 2 : NotNull - Value is required but can be an empty string/collection.

• 3 : NotEmpty - Value is required and cannot be empty.

• ReferenceType (object|null): Referenced schema for certain data types (Document, DocumentCollection,
Reference, ReferenceCollection):

• Id (string): Identifier of the referenced schema.

• DisplayName (string): Optional display name of the referenced schema.

• Size (number): Maximum or exact size of the data type. For variable-length types (e.g., text, collections), this
defines the size; for others, it is zero.

• Specification (string): Extension data for the property in application/x-www-form-urlencoded format
(RFC-1867).

Example

{
  "Id": "592fc9f8983a36266c0912aa",
  "Name": "TextField",
  "DisplayName": "Text Field",
  "Description": "",
  "DataType": 0,
  "DefaultValue": null,
  "Uniqueness": 0,
  "Requirement": 0,
  "ReferenceType": null,
  "Size": 0,
  "Specification": null
}

Internationalization (i18n)
Charon supports storing text data in multiple languages by using the special LocalizedText data type.

A list of possible translation languages is defined in the Project Settings.

There are two ways to pass translatable text to a third party (e.g., for localization or editing):

• You can export all translatable data as an XLSX spreadsheet.

• You can use the special localization format, XLIFF (XML Localization Interchange File Format).

Translation flow via UI

To export and translate your project’s data, follow these steps:

1. Go to the dashboard of the project for which you want to generate source code.

2. Click on the “Internationalization Settings” link.

3. Click on the “Export” button to export the data.

4. Download the exported file and provide it to your translation team for translation.

5. Once the data has been translated, click on the “Import” button on the same page.

Overview

134

https://en.wikipedia.org/wiki/Office_Open_XML
https://en.wikipedia.org/wiki/XLIFF


6. Select the translated file and follow the steps provided in the import wizard.

Translation flow via CLI

Exporting to XLSX spreadsheet

To export translatable text data as XLSX, run the DATA EXPORT command with the following parameters:

dotnet charon DATA EXPORT --dataBase "c:\my app\gamedata.json" --properties [LocalizedText] --output "c:\my app\text_all_languages.xlsx" --outputFormat xlsx

• Use --properties [LocalizedText] parameter to indicate that only the properties containing
LocalizedText should be exported.

• Use --languages parameter to limit the number of exported languages.

Extra columns may be present in the export files, which are required for the correct import of the translated data.

Importing from XLSX spreadsheet

Once your data is processed (e.g., translated), you can import it using the DATA IMPORT command with the
safeUpdate mode:

dotnet charon DATA IMPORT --dataBase "c:\my app\gamedata.json" --input "c:\my app\text_all_languages.xlsx" --inputFormat xlsx --mode safeUpdate

Exporting to XLIFF

To export translatable text data as XLIFF, run the DATA I18N EXPORT command with the following parameters:

dotnet charon DATA I18N EXPORT --dataBase "c:\my app\gamedata.json" --sourceLanguage en --targetLanguage fr --output "c:\my app\en_fr_texts.xliff" --outputFormat xliff

• Use the --outputFormat parameter to indicate the exact format of the exported data, which can be either
xliff, xiff1, or xliff2.

• Use --sourceLanguage to indicate the language text is being translated from as the source, and
--targetLanguage to indicate the target language that the text is being translated to.

• To get a list of configured translation languages for the game data, run the DATA I18N LANGUAGES
command.

Importing from XLIFF

Once the data has been processed, you can import it using the DATA I18N IMPORT command.

dotnet charon DATA I18N IMPORT --dataBase "c:\my app\gamedata.json" --input "c:\my app\en_fr_texts.xliff"

Other formats

While the export and import commands may accept other formats, it cannot be guaranteed that they will be
supported.

Working with Logs
Charon creates a log files with various messages that may be useful for troubleshooting and debugging.

Unity Plugin

Log files are saved to <project-directory>/Library/Charon/logs/.

Unreal Engine Plugin

Log files are saved to <project-directory>/Intermediate/Charon/logs/.

CLI and Standalone

Log files are saved to:

• Windows: ``C:/Users/%USERNAME%/AppData/Roaming/Charon/logs/`.

Overview

135



• MacOS: ~/Library/Application Support/Charon/logs

• Linux: ~/.config/Charon/logs

Note: Make sure to replace <project-directory> and <charon-directory> with the actual directories on
your system.

Logging Levels

Normally only the most important events are logged. If you have trouble identifying an issue, you might want to
change log to verbose. This way more information is included in logs.

Unity Plugin

In menu select Tools → Charon → Troubleshooting → Verbose Logs.

CLI and Standalone

Launch with --verbose parameter.

Then repeat the action that causes the bug (or the one you want analyzed anyway) and check log file again.

CLI Example:

dotnet charon SERVER START ./gamedata.json --launchDefaultBrowser --verbose

Resetting UI Preferences
If for some reason editor behaves erratically (grids aren’t displayed correctly or aren’t displayed at all), you can
restore default UI settings.

Unity plugin

Select in menu Tools → Charon → Troubleshooting → Reset Preferences.

CLI and Standalone

Launch with --resetPreferences. parameter.

Web

Use the Preferences profile tab <User Icon> → Profile → Preferences.

CLI Example:

dotnet charon SERVER START ./gamedata.json --launchDefaultBrowser --resetPreferences

Frequently Asked Questions (FAQ)
Is schema inheritance available?

Yes, “inheritance” is available in Charon. However, instead of traditional inheritance, Charon adopts a
composition-based approach for extending schemas. This means that you can enhance and expand the
functionality of existing schemas by including them into another schemas as Document properties. Read more
about it.

Glossary
Game Data

The static information for the game, such as items, quests, dialogues, etc., is stored as game data. Schemas are
also included to organize and structure game data.

Schema

A schema is a description of the structure for documents in game data. It defines the properties and structure of
each document in the game data.

Schema Property

A part of a schema that defines a specific property or attribute of a document in the game data.

Formula

Overview

136



A property data type in a schema for a C# expression that can be executed at runtime to calculate a value for a
field.

Reference

A property data type in a schema for a pointer to another document.

Document

A specific instance of a schema in the game data. It represents a single item or entity in the game, such as an
item, quest, or dialogue.

Field

A named part of a document that holds a specific value.

Source Code

The code generated by Charon that represents the game data. This code can be used to load the game data at
runtime.

Metadata

All the schemas and relations between them. This data is used by Charon to generate the source code for the
game data.

Workspace

In the web application, the workspace is the place where users can manage their projects and subscription.

Project

In the web application, a project is a container for organizing related game data. It can contain multiple
branches.

Branch

In the web application, a branch is a specific variant of game data within a project. It can be used to manage
different versions or stages of the game data.

API Key

A unique identifier generated for a user in the User’s Profile “API Keys” section, which can be used to access the
REST API and CLI for various operations. It allows for automation of game build processes, such as pushing
game data to local GIT repositories.

Publication

The process of exporting game data in a format that can be loaded into the game.

Overview

137





HTTP Routing Table

/app

PUT /app/log/

Log specified message on server. Used internally
while standalone-hosted.

/auth

POST /auth/flow/api-key/

null

POST /auth/flow/email-code/

null

POST /auth/flow/oauth2/{authenticationProvider}/co
mplete/

null

POST
/auth/flow/oauth2/{authenticationProvider}/prepare/

null

POST /auth/flow/on-behalf/

null

POST /auth/flow/password/

null

POST /auth/one-time-code/

null

/billing

GET /billing/{userId}/account/

Get billing account by id.

GET /billing/{userId}/payment/status/

Get status of payment for subscription for
workspace.

POST /billing/notification/

Accept notification from payment gate.

POST /billing/{userId}/account/

Update billing information

POST /billing/{userId}/contact-request/

Request contact from sales representative.

POST /billing/{userId}/customer-portal/

Get url of customer portal for user if available.

POST /billing/{userId}/payment/

Make payment for selected invoice.

POST /billing/{userId}/payment/status/

Start subscription session for workspace.

POST /billing/{userId}/payment/upcoming/

Get prorated upcoming payment information.

/context

GET /context/

Get page context.

/datasource

GET /datasource/{dataSourceId}/

Backup data source.

GET /datasource/{dataSourceId}/capabilities/

Get data source's capabilities.

GET /datasource/{dataSourceId}/collection/{schem
aNameOrId}/

Find document by it's id or unique property value.

GET /datasource/{dataSourceId}/collections/

Export documents from multiple collections.

GET /datasource/{dataSourceId}/collections/raw/

Export documents from multiple collections into
downloadable format without response wrapper.

GET /datasource/{dataSourceId}/documents/query/

Query documents from all collections.

GET /datasource/{dataSourceId}/formula/type/

List formula types.

GET /datasource/{dataSourceId}/loading-progress/

Get data source's loading progress.

GET /datasource/{dataSourceId}/present-users/

Get list of users present in specificated data
source.

GET /datasource/{dataSourceId}/process/

List processes.

GET
/datasource/{dataSourceId}/process/{processId}/

Get process's state.

GET /datasource/{dataSourceId}/process/{processI
d}/result/raw/

Get process's execution result without response
wrapper.

GET /datasource/{dataSourceId}/raw/

Backup data source into downloadable format
without response wrapper.

GET
/datasource/{dataSourceId}/source-code/templates/

Get T4 templates for generating source code.

GET /datasource/{dataSourceId}/stats/

Get data source's statistics.

POST /datasource/{dataSourceId}/collection/{sche
maNameOrId}/

Update document.

POST /datasource/{dataSourceId}/collection/{sche
maNameOrId}/documents/

List documents.

POST /datasource/{dataSourceId}/collection/{sche
maNameOrId}/translation/

Machine translate specified document. First
language in the list is a source language.



POST
/datasource/{dataSourceId}/completion/schema/

Suggest schema structure with specified AI tool.

POST /datasource/{dataSourceId}/completion/sche
ma/icon/

Suggest an icon for schema using AI tool.

POST /datasource/{dataSourceId}/completion/threa
d/{threadId}/

Send AI chat message to specified chat thread.

POST /datasource/{dataSourceId}/converter/raw/

Convert specified game data documents from
request body to JSON format and return it without
response wrapper.

POST
/datasource/{dataSourceId}/documents/query/

Pick multiple documents by their unique properties
e.g. batched find request. Max documents per
request is - 20.

POST
/datasource/{dataSourceId}/process/{processId}/

Stop process.

POST /datasource/{dataSourceId}/source-code/

Generate source code for data source.

POST /datasource/{dataSourceId}/transaction/{tran
sactionId}/

Commit pending transaction.

POST /datasource/{dataSourceId}/translation/

Machine translate portion of game data. First
language in the list is a source language.

POST /datasource/{dataSourceId}/validity/

Validadate data source with specified
requirements/parameters.

PUT /datasource/{dataSourceId}/

Restore data source from specified documents.

PUT /datasource/{dataSourceId}/collection/{schema
NameOrId}/

Create document.

PUT /datasource/{dataSourceId}/collection/{schema
NameOrId}/documents/

Bulk change documents.

PUT /datasource/{dataSourceId}/collections/

Import documents into multiple collections.

PUT /datasource/{dataSourceId}/transaction/

Wait for data source availability and begin new
transaction. Identifier specified in request later
could be used with other request in transaction
parameter.

DELETE /datasource/{dataSourceId}/collection/{sch
emaNameOrId}/

Delete document by it's id.

DELETE /datasource/{dataSourceId}/completion/thr
ead/{threadId}/

Delete existing AI chat thread.

DELETE /datasource/{dataSourceId}/transaction/{tr
ansactionId}/

Reject pending transaction.

/membership

GET /membership/packages/

Get all membership packages.

/notification

GET /notification/

Subscribe on notifications from server. This is
WebSocket endpoint, any non 'Upgrade' requests
will fail.

/preferences

GET /preferences/

Get default preferences.

PUT /preferences/

Save default preferences.

DELETE /preferences/user/

Reset all user's preferences.

PATCH /preferences/

Patch default preferences.

/project

GET /project/

Get all available projects.

GET /project/my/

Get current user's projects.

GET /project/{projectId}/

Get project by id.

GET /project/{projectId}/preferences/

Get project team-shared preferences.

GET /project/{projectId}/preferences/user/

Get project user's preferences.

POST /project/{projectId}/

Update project with new parameters.

POST /project/{projectId}/branch/{branchName}/

Update branch in project.

POST /project/{projectId}/permissions/

Update project permissions.

POST /project/{projectId}/workspace/

Transfer project form one workspace to another.

PUT /project/

Create new project.

PUT /project/{projectId}/branch/

Create branch in project.

PUT /project/{projectId}/branch/{branchName}/



Push branch content into another branch in this
project.

PUT /project/{projectId}/members/

Invite another user into project.

PUT /project/{projectId}/preferences/

Save project team-shared preferences.

PUT /project/{projectId}/preferences/user/

Save project user's preferences.

DELETE /project/{projectId}/

Delete project and all related data.

DELETE /project/{projectId}/branch/{branchName}/

Delete branch in project.

DELETE /project/{projectId}/members/

Expel another user from project.

PATCH /project/{projectId}/preferences/

Patch project team-shared preferences.

PATCH /project/{projectId}/preferences/user/

Patch project user's preferences.

/resourceStorage

GET /resourceStorage/{resourceId}/

Get resource metadata by id.

GET /resourceStorage/{resourceId}/data/

Get resource binary data by id.

PUT /resourceStorage/

Create resource.

DELETE /resourceStorage/{resourceId}/

Delete resource by id.

/search

POST /search/

Search for users, projects, workspaces by
specified keyword.

/token

POST /token

null

/user

GET /user/

Get all available users.

GET /user/me/

Get current user.

GET /user/{userId}/

Get user by id.

GET /user/{userId}/public/

Get user public profile by id.

POST /user/password-reset/

Change user password by using code from email.

POST /user/public/

Get public profiles of users by their ids.

POST /user/{userId}/

Update user with new parameters.

POST /user/{userId}/invitations/{invitationId}/

Accept invitation.

POST /user/{userId}/login/api-key/

Add API key login to user.

POST /user/{userId}/login/password/

Change user password by using temporary code or
old password.

POST /user/{userId}/mfa/email-code/

Configure email-code multi-factor authentication.

PUT /user/

Create user with specified parameters.

PUT /user/password-reset/

Request password reset.

DELETE /user/{userId}/

Strip personal information from user, quit all groups
and block any access to this user.

DELETE /user/{userId}/invitations/{invitationId}/

Decline invitation.

DELETE /user/{userId}/login/api-key/

Delete API key login from user.

DELETE /user/{userId}/login/tokens/

Revoke all issues tokens for specified user.

/workspace

GET /workspace/

Get all available workspaces.

GET /workspace/my/

Get current user's workspaces.

GET /workspace/{workspaceId}/

Get workspace by id.

GET /workspace/{workspaceId}/members/

Get workspace members.

GET /workspace/{workspaceId}/preferences/

Get workspace team-shared preferences.

GET /workspace/{workspaceId}/preferences/user/

Get user's workspace preferences.

POST /workspace/{workspaceId}/

Update workspace with new parameters.

POST /workspace/{workspaceId}/quota-usage/

Get workspace quota usage.

PUT /workspace/{workspaceId}/administrators/

Promote member to workspace administrators.

PUT /workspace/{workspaceId}/preferences/

Save workspace team-shared preferences.



PUT /workspace/{workspaceId}/preferences/user/

Save user's workspace preferences.

DELETE /workspace/{workspaceId}/administrators/

Demote member from workspace administrators.

PATCH /workspace/{workspaceId}/preferences/

Patch workspace team-shared preferences.

PATCH
/workspace/{workspaceId}/preferences/user/

Patch user's workspace preferences.


	Overview
	Why Choose Charon?
	Is It Free?
	What is Charon
	Further reading
	Unreal Engine Plugin Overview
	Key Features

	Getting Started
	Prerequisites
	Installation from Marketplace
	Building from Source Code

	Core Concepts
	Data-Driven Design Principles
	Understanding the Plugin’s Architecture

	Working with the Plugin
	Creating Game Data
	Editing Game Data
	Refencing Game Data in Blueprints

	Advanced Features
	Localization and Multi-Language Support
	Referencing Unreal Engine Assets
	Feedback
	See also

	How to Create Game Data File
	Step By Step
	Throubleshooting
	See also

	Unity Plugin Overview
	Key Features

	Getting Started
	Prerequisites
	Installation from OpenUPM (recommended)
	Installation from Unity Asset Store
	Installation from GitHub

	Core Concepts
	Data-Driven Design Principles
	Understanding the Plugin’s Architecture

	Working with the Plugin
	Creating Game Data
	Editing Game Data

	Advanced Features
	Localization and Multi-Language Support
	Referencing Game Data in Scenes
	Work & Build Automation
	Feedback
	See also

	CharonCli Overview
	Game Data Management
	Import and Export
	Localization (I18N)
	Patching and Backup
	Validation and Code Generation
	Tool Utilities
	See also

	Migration from Legacy Version (Before 2025.1.*)
	Automated Migration
	Manual Migration
	See also

	Migrating to Web Application
	Migration with Connection
	See also

	Standalone Application Overview
	Prerequisites
	Installation and Updates
	Creating and Editing Game Data
	See also

	Web Application Overview
	Starting with a new Project
	See also

	CLI Access to charon.live
	Step By Step
	See also

	Migrating to Web Application
	Backup Data Step by Step
	Restoring Backup in the Web Application
	See also

	Roles and Permissions
	See also

	REST API
	Testing REST API
	Working with REST API
	Authentication
	DataSource
	DataSourceCapabilities
	UserPresence
	Processes
	Formulas
	AiCompletion
	MachineTranslation
	Preferences
	User
	Workspace
	WorkspaceQuota
	Project
	Membership
	Billing
	Search
	ResourceStorage
	Context
	Notifications
	Troubleshooting


	Basic Navigation and User Interface Overview
	Dashboard
	Document Collection
	Document Form
	See also

	Creating Document Type (Schema)
	Schema
	Benefits of Structured Data
	Data Organization
	Data Validation
	Data Consistency
	Data Interoperability

	Analyzing Game Requirements
	Identifying Schemas and Relationships
	Defining Schemas and Properties
	All Data Types
	Date
	Example

	Document
	Example

	Document Collection
	Example

	Formula
	Example

	Integer
	Example

	Localized Text
	Example

	Logical
	Example

	Multi-Pick List
	Example

	Number
	Example

	Pick List
	Example

	Reference
	Example

	Reference Collection
	Example

	Text
	Example

	Time
	Example

	Table with example


	See also

	Filling Documents
	Importing JSON files
	Exporting to Spreadsheet and Importing Back
	Adding New Document
	See also

	Generating Source Code
	Using Project’s Dashboard UI
	Using Command-Line Interface (CLI)
	Example
	See also

	Implementing Inheritance
	1. Composition
	2. Merging
	3. Aggregation
	Conclusion
	See also

	Publishing Game Data
	Using Project’s Dashboard UI
	Using Command-Line Interface (CLI)
	Example
	See also

	Working with Source Code (C# 4.0)
	Loading Game Data
	Accessing Documents
	Formulas
	Generated Code Extensions
	See also

	Working with Source Code (C# 7.3)
	Loading Game Data
	Accessing Documents
	Formulas
	Generated Code Extensions
	See also

	Working with Source Code (Haxe)
	Loading Game Data
	Accessing Documents
	Formulas
	See also

	Working with Source Code (Type Script)
	Loading Game Data
	Accessing Documents
	Formulas
	See also

	Working with Source Code (UE C++)
	Loading Game Data
	Accessing Documents
	Formulas
	See also

	Command Line Interface (CLI)
	Installation
	Option 1: dotnet tool (recommended)
	Option 2: Bootstrap scripts

	Command Syntax
	Absolute and relative paths
	Getting Help Text
	Apply Patch
	Command
	Parameters

	Create Backup
	Command
	Parameters
	Output

	Create Document
	Command
	Parameters
	Input Data Schema
	Output

	Create Patch
	Command
	Parameters

	Delete Document
	Command
	Parameters
	Output

	Export Data
	Command
	Parameters
	Output
	Modifying Exported Data with yq

	Find Document
	Command
	Parameters
	Output

	Add Translation Languages
	Command
	Parameters

	Export Translated Data
	Command
	Parameters
	Output

	Importing Translated Data
	Command
	Parameters

	List Translation Languages
	Command
	Parameters

	Import Data
	Command
	Parameters
	Input Data Structure

	List Documents
	Command
	Parameters
	Output

	Restore from Backup
	Command
	Parameters

	Update Document
	Command
	Parameters
	Input Data Schema
	Output

	Validate Game Data
	Command
	Parameters
	Output Data Schema

	Generate C# Source Code
	Command
	Parameters

	Generate Haxe Source Code
	Command
	Parameters

	Export Code Generation Templates
	Command
	Parameters

	Generate Text from Templates (Obsolete)
	Generate TypeScript Source Code
	Command
	Parameters

	Generate Unreal Engine C++ Source Code
	Command
	Parameters

	Initialize Game Data
	Command
	Parameters

	URL input/output parameters
	Supported URL Schemes
	Authentication
	Examples

	Start in Standalone Mode
	Command
	Parameters

	Universal parameters
	Environment variables
	Get Charon Version
	Command
	Parameters



	Game Data Structure
	Game Data
	Project Settings
	Schema
	Schema Property

	Internationalization (i18n)
	Translation flow via UI
	Translation flow via CLI
	Exporting to XLSX spreadsheet
	Importing from XLSX spreadsheet
	Exporting to XLIFF
	Importing from XLIFF
	Other formats


	Working with Logs
	Logging Levels

	Resetting UI Preferences
	Frequently Asked Questions (FAQ)
	Glossary


	HTTP Routing Table

